

Progetto LEMED-IBEX

Modello di distribuzione spaziale degli stambecchi sull'arco alpino occidentale

Relazione finale

Enrico Caprio, Susanne Jähnig, Raffaele Uliana, Dan Chamberlain

15 luglio 2020

Progetto "LEMED-IBEX" n°1644 finanziato dal Fondo europeo di sviluppo regionale (FESR) nell'ambito del programma Interreg V-A Francia-Italia ALCOTRA 2014-2020 Obiettivo specifico 3.2 Biodiversità

Sommario

Sommario	.2
1. Premessa	.3
2. Modelli di Distribuzione dello Stambecco	.3
2.1 Introduzione	.3
2.2 Materiali e metodi	.5
2.1.1. Definizione e preparazione delle variabili predittive	.6
2.1.2. Preparazione dei dati di presenza della specie1	10
2.1.3. Elaborazione del modello di distribuzione1	12
2.3 Risultati1	14
2.3.1 Risultati del Modello di Distribuzione dello Stambecco a scala 100x100 m	18
2.3.2 Risultati del Modello di Distribuzione dello Stambecco a scala 600 x 600 m	37
3. Corridoi ecologici	51
3.1 Introduzione6	51
3.2 Materiali e metodi	53
3.3 Risultati	57
4. Impatto attività turistiche e sportive	70
4.1 Modello invernale	70
4.2 Modello primaverile	73
4.3 Modello estivo	75
4.3 Modello autunnale	78
4.4 Modello del periodo Lock-Down	30
4.5 Interazione con attività di Eliski	33
4.6 Interazione con il pascolo	34
5. Bibliografia) 1
6. Materiale supplementare	98
Appendice I - Raster utilizzati nei modelli di distribuzione	98
Scala 100x100	98
Scala 600x60011	13
Appendice II AUC e TSS dei modelli 100 x10012	25
Appendice III AUC e TSS dei modelli climatici al 600 x 60012	28
Appendice IV Modelli Distributivi dello stambecco a scala 100x100m	31
Appendice V Modelli Distributivi dello stambecco a scala 600x600m	11
Appendice VI Proiezione dei Modelli Distributivi dello stambecco a scala 600 x 600m	19

1. Premessa

Il presente documento costituisce la relazione finale del Dipartimento di Scienze della Vita e Biologia dei Sistemi prevista secondo la convenzione Rep 14_2019 Prot 500_2019 con l'Ente di Gestione delle Aree Protette delle Alpi Cozie.

Il documento presenta i risultati delle elaborazioni condotte nell'ambito del Progetto LEMED-IBEX con particolare riferimento ai seguenti aspetti:

- Realizzazione di un modello di vocazionalità ambientale per lo stambecco nelle Alpi occidentali, partendo da dati di presenza occasionale e dati di geolocalizzazione di individui dotati di collari GPS.
- Identificazione delle aree più vocate per la specie e sovrapposizione di tali aree con la distribuzione nota delle popolazioni esistenti
- Quantificazione della connettività ecologica delle aree evocate e identificazione di corridoi ecologici potenziali per mettere in collegamento le aree isolate.
- 4) Analisi delle tipologie ambientali presenti nei corridoi e identificazione di possibili minacce e vulnerabilità di tali aree (per esempio disturbo antropico).
- 5) Identificazione di possibili conflitti tra attività antropiche e la specie. In particolare, legati a turismo, escursionismo, sport invernali, interazioni con il pascolo. Tali analisi verranno modulate sulla base dei dati disponibili, e verranno focalizzate a livello locale, per estrapolare pattern di risposta generalizzabili.

2. Modelli di Distribuzione dello Stambecco

2.1 Introduzione

I modelli predittivi di distribuzione spaziale delle specie (SDM) sono tecniche largamente utilizzate per descrivere o prevedere la distribuzione delle specie (Elith & Leathwick 2009). Questi modelli, noti anche come "modelli di nicchia ecologica", consentono di mettere in relazione i dati di presenza delle specie in località note con gli attributi spaziali e quindi ambientali di quei punti (Franklin & Miller 2010; Elith & Leathwick 2009). Questo approccio permette ad esempio di predire la distribuzione attuale e futura di una specie, al fine di comprendere quali siano gli habitat o le caratteristiche climatiche idonei per essa, fornendo in molti casi strumenti importanti per

conservarla. Inoltre, se la specie selezionata è un indicatore di biodiversità, quanto modellato può essere valido anche per altre specie (Lindenmayer et al. 2000). Inizialmente questi modelli sono stati sviluppati principalmente per dati di presenza/assenza, situazione che prevede che per ciascun sito dell'area indagata i dati siano raccolti in modo sistematico, ottenendo informazioni complete su presenza, assenza e abbondanza della specie (Franklin e Miller 2010). Molti ecologi utilizzano in questo caso metodi di regressione (come Modelli Lineari Generalizzati, Resource Selection Function, Boosted Regression Trees e altri). Tuttavia, essendo i dati di assenza spesso carenti o distorti e quasi mai certi, sono stati sviluppati modelli adattati all'utilizzo dei dati di sola presenza (Elith et al. 2011; Phillips et al. 2006). Ad oggi esiste un numero elevato di tali metodi, che differiscono per i loro requisiti relativi ai dati, per i modelli statistici utilizzati, per i formati di output e per la performance (Elith et al. 2006; Guisan & Zimmermann 2000). Gran parte di essi si basano sulla teoria della nicchia ecologica (Hirzel & Le Lay 2008; Phillips et al. 2006), che definiscono una funzione che collega la specie studiata al suo ambiente (Hirzel & Le Lay 2008). Analisi preliminari hanno indagato una serie di modelli, quali GLM (Modelli Lineari Generalizzati), GAM (Modelli Generali Additici), Random Forests e Modelli di Massima Entropia, ma i risultati delle performance dei suddetti modelli non era mai migliore dell'algoritmo dei modelli di Massima Entropia.

Pertanto, per elaborare i modelli di distribuzione dello stambecco (Capra ibex) attraverso soli dati certi di presenza come in questo caso, è stato il scelto l'algoritmo comunemente conosciuto come MaxEnt (Maximum Entropy Modeling), affermatosi negli anni recenti per la sua particolare efficacia (Phillips e Dudík 2008; Phillips et al. 2006). Questo strumento analizza la relazione esistente tra i fattori ambientali e la presenza delle specie e viene ormai comunemente utilizzato per prevedere la distribuzione potenziale di una specie a partire dai dati di sola presenza (Baldwin 2009). Questo algoritmo confronta le informazioni ambientali disponibili per i punti in cui la presenza della specie è stata accertata ("samples") con quelle dell'intero territorio, cioè con i siti definiti "background samples", casualmente selezionati, in cui non è stata riscontrata la presenza della specie (Phillips et al. 2009), restituendo una distribuzione spaziale dell'idoneità dell'area di studio per la specie stessa (Raes & Ter Steege 2007). Il metodo individua la distribuzione ad entropia massima, sotto le limitazioni imposte da fattori ambientali. Massimizzare l'entropia di una distribuzione di probabilità significa minimizzare l'incertezza assunta sui parametri del sistema non noti, massimizzando il potere predittivo dei soli dati certi. Questo approccio permette di ottimizzare l'utilizzo delle informazioni disponibili, cioè i dati di presenza della specie oggetto di studio, evitando di fare assunzioni su ciò che non si conosce (Phillips et al. 2006), cioè le zone che la specie evita.

4

Confrontato con altri metodi disponibili, MaxEnt risulta più efficiente ed affidabile soprattutto nei casi in cui si hanno solo dati di presenza certi (Guisan et al. 2007; Peterson et al. 2007; Elith et al. 2006). I risultati ottenuti con questo metodo sono inoltre meno influenzati da livelli ineguali di campionamento, caratteristica che, in caso di scarsa omogeneità dei dati disponibili, può essere molto utile per scopi applicativi come l'identificazione delle zone di maggior interesse per la conservazione (Tsoar et al. 2007). MaxEnt necessita l'inserimento in input di due categorie di informazione:

- 1. la localizzazione delle presenze della specie (samples data);
- le variabili predittive (o covariate) che caratterizzano i siti background (background samples) dell'area di studio (Elith et al 2006; Phillips e Dudik 2008; Merow et al. 2013).

I punti utilizzati (*samples data*) si riferiscono alle localizzazioni di individui georeferenziati tramite i fix GPS. Le variabili ambientali (*background samples*) sono state scelte in base alle informazioni territoriali disponibili e alla loro utilità nel rappresentare il più possibile la nicchia ecologica dello stambecco, anche considerando la bibliografia esistente. La predisposizione di un modello spaziale di idoneità ambientale per una specie, a priori, comporta alcune decisioni tecniche che devono essere opportunamente effettuate (Guisan & Thuiller 2005; Ferrier et al. 2002). Tra queste, la risoluzione e l'estensione dell'area di studio sono aspetti tecnici importanti, capaci di influenzare le previsioni ecologiche del modello (Huettmann e Diamond 2006). Queste scelte dipendono dalla scala dei dati ambientali disponibili (Graham et al. 2004), dalle caratteristiche dei dati della specie come l'accuratezza geografica, la dimensione del campione e lo sforzo di campionamento (Huettmann e Diamond 2006), e talvolta dalle prestazioni del computer (Guisan et al. 2007).

2.2 Materiali e metodi

L'analisi con MaxEnt è stata condotta all'interno dell'area di studio del progetto Alcotra LEMED-Ibex (Fig. 1) che ha un'estensione di 38633 km².

Le analisi sono state condotte a due scale spaziali. La prima scala spaziale ha modellato il territorio utilizzando pixel di 100 x 100 m ed ha utilizzato come covariate variabili predittive quali quota, esposizione e pendenza e altri indici topografici, uso del suolo e disturbo antropico.

La seconda scala spaziale ha modellato il territorio utilizzando pixel di 600 x 600 m ed ha come covariate variabili climatiche.

5

Figura 1 - Area di studio (confini blu) e carta dell'uso del suolo Corine Land Cover 2018

2.1.1. Definizione e preparazione delle variabili predittive

Una volta stabilita l'area di studio, sono stati reperiti e ritagliati i layer che sono stati poi utilizzati nei modelli di distribuzione dello stambecco.

Per i modelli a scala 100 x 100 m sono state utilizzate le seguenti variabili predittive sintetizzate in tabella 1 e Appendice I:

- Uso del suolo (Corine Land Cover (CLC) 2018, Version 2020_20u1). La cartografia dell'uso del suolo è stata riclassificata ottenendo delle mappe binarie, ovvero di presenza assenza, delle seguenti macrocategorie:
 - CLC1 Superfici artificiali
 - o CLC21 Seminativi
 - o CLC22 Colture permanenti

- CLC23 Prati stabili
- CLC24 Zone agricole eterogenee
- CLC31 Zone forestali
- CLC32 Zone caratterizzate da vegetazione arbustiva e/o erbacea
- CLC33 Zone aperte con vegetazione rada o assente
- CLC4_5 Zone umide e corpi idrici
- Modello Altimetrico Digitale 25x25m (European Digital Elevation Model (EU-DEM), version
 1.1)
- Mappe tematica dell'attività sportiva desunte da Strava. Strava è un servizio web molto popolare usato da appassionati e sportivi per tracciare le proprie attività di corsa, ciclismo e sci attraverso dispositivi che contengono un GPS (ad esempio smartphone e smartwatch). I risultati della sessione di allenamento vengono poi caricati sul sito web di Strava. I dati vengono poi anonimizzati e aggregati per produrre mappe che mostrano l'intensità dell'attività sportiva attraverso una mappa di calore. Tale codifica non consente di identificare il numero di utenti che hanno utilizzato una determinata area, ma offre una stima qualitativa che consente di identificare le zone dove l'attività sportiva è effettuata da più persone e le zone dove il disturbo è minimo o nullo, sulla base di un codice di colore di intensità crescente (da 0 a 255). Tale codice di colore è stato convertito in un valore e utilizzato come indice di intensità. Le mappe di Strava che si riferiscono a sport invernali, corsa e bici sono state utilizzate come proxy del disturbo antropico lungo sentieri, strade ed aree di montagna. I tematismi Strava che sono stati utilizzati comprendono gli sport invernali, il trekking, la corsa e il ciclismo. Le mappe sono state georeferenziate dalle immagini presenti sul sito https://www.strava.com/heatmap. Le mappe che sono state utilizzate si riferiscono all'attività sportiva effettuata nel periodo 2015-2017.

Dal Modello Altimetrico Digitale del terreno sono state calcolate alcune derivate topografiche e altre caratteristiche del terreno, ovvero:

- la pendenza (espressa in gradi);
- l'esposizione Nord, espressa con valori da +1 (esposizione Nord) a -1 (esposizione Sud)
 calcolata trasformando l'esposizione in radianti e poi con la seguente formula: sin(rad);

- l'esposizione Est, espressa con valori da +1 (esposizione Est) a -1 (esposizione Ovest)
 calcolata trasformando l'esposizione in radianti e poi con la seguente formula: cos(rad);
- il TRI (Terrain Ruggedness Index Indice di Asperità del Terreno che è la media della differenza assoluta tra il valore di una cella e quello delle 8 celle che lo circondano). Il TRI (Wilson et al. 2007) consente di esprimere la quantità di differenza di elevazione tra celle adiacenti di una griglia di elevazione digitale (DEM). Il processo calcola la differenza nei valori di elevazione da una cella centrale e dalle otto celle che la circondano immediatamente. Quindi piazza ciascuno degli otto valori della differenza di elevazione per renderli tutti positivi e fa la media dei quadrati. L'indice di asperità del terreno viene quindi derivato prendendo la radice quadrata di questa media e corrisponde al cambiamento di elevazione medio tra qualsiasi punto su una griglia e l'area circostante. In genere il TRI può essere interpretato secondo i seguenti valori soglia:
 - o 0-80 m è considerato rappresentare una superficie piana del terreno;
 - o 81-116 m rappresenta una superficie quasi piana;
 - o 117-161 m una superficie leggermente irregolare;
 - o 162-239 m una superficie irregolarmente robusta;
 - o 240-497 m una superficie moderatamente aspra;
 - 498-958 m una superficie molto aspra;
 - 959-4367 m una superficie estremamente aspra;
- il TPI (Topographic Position Index Indice di Posizione Topografico che è la differenza tra il valore di una cella e il valore medio delle 8 celle circostanti). Il TPI assume valori positivi quando il punto centrale tende verso i crinali, assume valori negativi verso valle e valori vicini allo zero in zone pianeggianti oppure in zone con pendenza costante.

Tabella 1 - Elenco delle variabili predittive utilizzare per effettuare i Modelli di Distribuzione dello Stambecco a scala 100x100m

Corine land Cover 2018
EU-DEM version 1.1
Pendenza in gradi
Esposizione Nord

Esposizione Est
TRI (Indice di asperità del terreno)
TPI (Indice di posizione topografico)
Radiazione solare (calcolata stagionalmente e annualmente)
Disturbo invernale (desunte da Strava)
Disturbo estivo (desunte da Strava)

I modelli a scala 600 x 600 m sono stati effettuati per poter utilizzare variabili climatiche che non sono disponibili per l'area di studio a definizione inferiore. Le variabili climatiche utilizzate sono state scaricate dall'archivio CHELSA Versione 1.2 (Climatologia ad alta risoluzione della superficie terrestre). Si tratta di un database ad alta risoluzione (30 secondi d'arco) che riporta dati climatici sulla superficie terrestre. I dati di temperatura e di precipitazione sono corretti utilizzando predittori orografici che tengono in considerazione i venti e le esposizioni delle valli (Karger et al. 2017, 2018). I dati che sono stati utilizzati riguardano la temperatura media annua, la stagionalità della temperatura, la massima temperatura del mese più caldo, la minima temperatura del mese più freddo, il range delle temperature annuale, la precipitazione annua e la precipitazione del mese più secco che si riferiscono al periodo 1979- 2013. Inoltre, sono stati aggregati i dati mensili per ottenere precipitazioni cumulate e temperature medie per ogni trimestre utilizzato per raggruppare i dati di presenza dello stambecco. Accanto ai dati di temperatura abbiamo calcolato a scala chilometrica il Modello di Elevazione Digitale (DEM) e gli indici di asperità del terreno (TRI) e di posizione topografico precedentemente descritti (TPI) (Tabella 2 e Appendice II).

Tabella 2 - Elenco delle variabili predittive utilizzare per effettuare i Modelli di Distribuzione dello Stambecco a scala 600 x 600m

BIO10_01 – Temperatura media annua (°C*10)
BIO10_04 – Stagionalità della temperatura (deviazione standard)
BIO10_05 – Massima Temperatura del Mese più caldo (°C*10)
BIO10_06 – Minima Temperatura del Mese più freddo (°C*10)
BIO10_07 – Range delle temperature annuale (Massima – Minima) (°C*10)
BIO10_12 – Precipitazione annua (mm/anno)
BIO10_17 – Precipitazione della stagione più secca (mm/anno)
PPTWIN – Precipitazione cumulata invernale (mm/anno)

PPTSPR – Precipitazione cumulata primaverile (mm/anno)
PPTSUM – Precipitazione cumulata estiva (mm/anno)
PPTAUT – Precipitazione cumulata autunnale (mm/anno)
TMEDWIN – Temperatura media invernale (°C*10)
TMEDSPR – Temperatura media primaverile (°C*10)
TMEDSUM – Temperatura media estiva (°C*10)
TMEDAUT – Temperatura media autunnale (°C*10)
TRI (Indice di asperità del terreno)
TPI (Indice di posizione topografico)
DEM (Modello di Elevazione Digitale)

2.1.2. Preparazione dei dati di presenza della specie

I modelli di distribuzione dello Stambecco sono stati effettuati combinando due fonti di dati. La prima (più corposa) corrisponde ai dati di geolocalizzazione di stambecchi dotati di collare GPS. I dati sono stati forniti dal Parco Nazionale des Ecrins, dall'Ente di Gestione delle Alpi Cozie, dal Parco Nazionale del Mercantour, dal Parco Naturale delle Alpi Marittime, Parco Nazionale della Vanoise, dalla Regione Valle d'Aosta e da Asters. Tali dati si riferiscono a 184 animali, di cui 60 femmine e 124 maschi (tabella 3), marcati dal 2010 al 2020.

I dati ricevuti sono stati sottoposti a uno screening per scartare i dati imprecisi, mantenendo solo i dati classificati 3D dal sistema GPS, inoltre è stata utilizzata una soglia di HDOP<5 per garantire un minore errore nel posizionamento del fix. L'HDOP (*Horizontal Diluition Of Precision*) è un parametro che indica quanto sia buona la geometria dei satelliti (ovvero la loro posizione rispetto all'orizzonte) utilizzati dal collare per fare calcolare le coordinate. Non esiste un valore soglia, ma la regola generale vuole che più l'HDOP sia basso migliore sia la precisione di localizzazione del collare GPS. Sono stati inoltre controllate localizzazioni 'sospette' individuando ad esempio i fix a quote insolitamente alte o insolitamente basse e adottando le soluzioni più opportune (rimozione in caso di dato sospetto o mantenimento se la localizzazione era plausibile).

Una volta ripulito il dataset conteneva 356252 dati.

Tabella 3 - Distribuzione degli animali marcati per sesso e area di studio

	F	М	Totale
--	---	---	--------

Alpi Cozie	5	11	16
Alpi Marittime	5	11	16
Valle d'Aosta	0	3	3
Asters	0	12	12
Parco Nazionale des Ecrins	36	56	92
Parco Nazionale del Mercantour	7	13	20
Vanoise	7	18	25
Totale complessivo	60	124	184

La seconda fonte di dati corrisponde a dati raccolti da progetti di citizen science. Alcuni partner del progetto (in particolare Alpi Cozie e Marittime) hanno attivato progetti di raccolta dati su iNaturalist. Sono stati inoltre forniti i dati dell'Archivio Vertebrati Subalpino della Regione Piemonte "Aves.Piemonte".

L'archivio di dati di citizen science contiene 1736 dati raccolti dal 2005 al 2019. Anche questi dati sono stati sottoposti ad uno screening per valutarne la bontà ed eliminare possibili errori. Sono stati eliminati i dati che non presentavano una data precisa, quelli con una localizzazione con imprecisione >100m e quelli che non consentivano di discriminare il sesso dello stambecco osservato. La pulizia ha ridotto il dataset a 1627 dati di cui 822 si riferiscono ad individui maschi e 805 a femmine (Tabella 4).

Provenienza	Maschi	Femmine	Totale
Aves.Piemonte	136	74	210
i-Naturalist Alpi Cozie	245	248	493
PNAM	441	483	924
Totale complessivo	822	805	1627

Tabella 4 - Distribuzione delle osservazioni, per sesso, provenienti da progetti di citizen science.

Le due fonti di dati (dati di collari GPS e ottenuti da progetti di citizen science) sono stati accorpati per produrre un unico dataset. I dati sono poi stati suddivisi per creare dataset ad hoc per ciascun modello di distribuzione.

Dal momento che lo Stambecco è una specie che mostra una spiccata variazione dell'uso dell'habitat a seconda della stagione e del sesso dell'individuo (Villaret et al. 1997, Parrini et al. 2003, Grignolio et al. 2004) abbiamo optato per eseguire una serie di modelli di distribuzione suddividendo gli individui sulla base del sesso e suddividendo l'anno in stagioni secondo Grignolio et al. 2004. Pertanto sono stati effettuati 4 modelli di distribuzione per i maschi e 4 per le femmine: uno per l'inverno (Dicembre, Gennaio e Febbraio), uno per la primavera (Marzo, Aprile e Maggio), uno per l'estate (Giugno, Luglio e Agosto) e uno per l'autunno (Settembre, Ottobre e Novembre). Per le femmine è stato effettuato un ulteriore modello per valutare le preferenze per quanto riguarda il periodo del parto e le settimane successive utilizzando il periodo da metà maggio a fine giugno.

2.1.3. Elaborazione del modello di distribuzione

Le elaborazioni dei modelli di distribuzione sono state effettuate utilizzando il software R (R Core Team 2018) e il pacchetto biomod2 (Tuiller et. al 2020). Prima di effettuare i modelli di distribuzione è stato necessario valutare la correlazione tra le variabili predittive. Infatti, le variabili in Tabella 3 e 4 sono state selezionate, attraverso una valutazione basata non solo sulla loro significatività ecologica per la specie, ma anche sulla base di una valutazione tecnica mirata a non utilizzare variabili predittive fortemente correlate tra loro, al fine di ricavare modelli parsimoniosi e più facili da interpretare (Merrow et al. 2013). Le variabili non correlate selezionate sono state poi utilizzate in un primo modello esplorativo ed il modello finale è stato poi prodotto utilizzando solo variabili che sulla base del test delle permutazioni avevano importanza > 0.

I modelli che generano predizioni di presenza-assenza vengono valutate solitamente comparando la predizione con un set di siti di validazione che, attraverso la costruzione di una matrice di confusione, registrano il numero di casi di veri positivi, falsi positivi, falsi negativi e veri negativi predetti dal modello. Due misure alternative che derivano dalla matrice di confusione sono la sensitività e specificità. La sensitività è la proporzione delle presenze osservate che sono predette correttamente, e quindi quantifica l'errore di omissione. La specificità, invece, è la proporzione dell'assenza osservata che è predetta correttamente, quantificando quindi l'errore di attribuzione (Allouche et al. 2006).

Un metodo alternativo per valutare l'accuratezza dei modelli è la curva dell'operatore ROC (Receiver Operating Characteristic; Fielding & Bell 1997). Le curve ROC sono costruite usando tutte le soglie possibili per classificare i punteggi in matrici di confusione, ottenendo sensibilità e specificità per ciascuna matrice, e quindi tracciando la sensibilità rispetto alla proporzione corrispondente di falsi positivi (uguale a 1 - specificità). L'area sotto la curva ROC (AUC) è spesso utilizzata come singola

12

misura indipendente dalla soglia per le prestazioni del modello (Manel, et al. 2001; Brotons et al. 2004; McPherson, Jetz & Rogers 2004;).

Un'altra misura di bontà dei modelli è il TSS (True Skill Statistics; Allouche et al., 2006). Il TSS è una misura indipendente dalla prevalenza ed è calcolata come Specificità + Sensitività -1. Il TSS è un metodo intuitivo della misura di performance dei modelli di distribuzione delle specie in cui le predizioni sono espresse come mappe di presenza e assenza (Shabani et al. 2018). L'efficienza del modello di distribuzione è stata valutata attraverso il valore dell'area sotto la curva ROC (*Receiver Operating Characteristic*), definito AUC (*Area Under the Curve*), che nell'output di MaxEnt può assumere valori compresi tra 0.5 e 1. Sono considerati efficienti i modelli il cui valore di AUC supera 0.8 (Manel et al. 2001). Modelli con eccellente capacità predittiva hanno valori di AUC > 0.90 (Philips et al. 2006; Araújo et al. 2005). Per quanto riguarda il TSS sono considerati efficienti i modelli con valori di TSS > 0.7.

I dati di presenza sono stati suddivisi in maschi e femmine e poi suddivisi per stagione, ottenendo così 9 dataset (4 per stagione per sesso più quello relativo al parto e le settimane successive per la femmina). L' ulteriore modello per il parto è stato condotto per valutare se le particolari necessità fisiologiche correlate alla gravidanza e allo svezzamento, combinate con una strategia antipredatoria diretta a difendere la prole, induce le femmine a selezionare ambienti particolari, ridurre i movimenti e generare un'alta fedeltà del sito (Grignolio et al 2004).

Ciascun dataset di presenza è stato poi unito ad un dataset di *back-ground* o di pseudo-assenza, appositamente generato in numero uguale ai dati di presenza.

Ciascun dataset è stato poi utilizzato per effettuare 10 valutazioni, ciascuna valutazione ha usato l'80 dei dati per calibrare i modelli ed il 20% per testare i modelli. L'importanza delle variabili è stata calcolata con dieci permutazioni. Il risultato finale è stato di 10 modelli per ciascun dataset.

I 10 modelli ottenuti sono stati poi combinati per effettuare una valutazione complessiva. Questa valutazione ha consentito di ottenere un modello di consenso totale, combinando le predizioni delle dieci iterazioni in un unico modello. Ogni singolo modello ed il modello totale sono poi stati salvati in un file ASCII (.asc) che consente riportare su una mappa in ambiente GIS l'indice di idoneità ambientale per la specie (Phillips et al. 2006) per ogni pixel dell'area di studio, a seguito dell'estrapolazione del modello. Pixel vicini al valore di 1 hanno una elevata idoneità ambientale, mentre quelli con valore prossimo a 0 hanno idoneità ambientale nulla (Phillips et al. 2006). Inoltre,

utilizzando un valore soglia desunto dal TSS per ciascun modello è stato prodotta una mappa binaria di presenza assenza.

Per quanto riguarda i modelli a scala di 100x100m, le mappe ottenute sono state combinate per ottenere un modello complessivo che restituisce il valore medio di idoneità di ciascun pixel. Per quanto riguarda i modelli a scala di 600 x 600m, i modelli ottenuti sono stati utilizzati per avere una previsione dell'idoneità ambientale per lo stambecco secondo gli scenari CMIP5 - RCP45 che prevedono un aumento della radiazione solare di 4.5 W/m² in uno scenario di stabilizzazione di emissioni di gas serra entro il 2100. Lo scenario prevede profili di concentrazione di CO₂ che raggiungono 538ppm entro il 2100 con una previsione di aumento della temperatura media globale pari a 1.8°C. Gli scenari futuri sono stati scaricati dal portale <u>https://chelsa-climate.org/downloads/</u> (Karger et al. 2017 a, b) e si riferiscono alle previsioni 2041-2060 del modello ACCESS1-0. (Bi et al. 2006).

2.3 Risultati

La correlazione tra le variabili selezionate per i modelli di idoneità ambientale a scala di 100 x 100 m non hanno rilevato particolari problemi dovuti alla correlazione. L'unica coppia di variabili che aveva un coefficiente di correlazione pari a 0.69 è stata TRI e pendenza (Figura 2). Ad ogni modo si è deciso di eliminare solo eventuali correlazioni > 0.7 pertanto pendenza e TRI sono stati inseriti nei modelli.

La correlazione tra le variabili selezionate per i modelli di idoneità ambientale a scala di 600 x 600 m hanno rilevato numerose variabili correlate tra loro tra quelle selezionate per i modelli. Un primo screening ha evidenziato correlazioni molto elevate (al di sopra di 0.85) tra Temperatura media annua (BIO10_01), Massima Temperatura del Mese più caldo (BIO10_05) e Minima Temperatura del Mese più freddo (BIO10_06), tra Stagionalità della temperatura (BIO10_04) ed il Range delle temperature annuale (BIO10_07) e tra la Precipitazione annua (BIO10_12) e la Precipitazione della stagione più secca (BIO_17) (Figura 3). Da questo set di variabili sono state selezionate la Temperatura media annua (BIO10_01), il Range delle temperature annuale (BIO10_07) e la Precipitazione della temperatura media annua (BIO10_01).

Figura 2 – Grafico di correlazione tra le variabili a scala di 100m. Le variabili rappresentate sono TPI Indice di posizione topografico, TRI, indice di asperità del terreno, DEM Modello di elevazione digitale, Slope Pendenza, Rad_win Radiazione solare per i mesi invernali, Winter.Disturbance aree interessate da attività sportiva in inverno, Summer.Disturbance aree interessate da attività sportiva in inverno. L'indice di correlazione è indicato nel pannello superiore.

Le tre variabili climatiche selezionate sono state testate con le medie stagionali di Temperatura e le Precipitazioni cumulate (Figura 4). Come ci si poteva aspettare anche tra queste variabili ci sono correlazioni molto elevate tra le temperature e tra le varie misure di precipitazione. Il range delle temperature invece non ha mostrato alcuna correlazione. Pertanto, per i modelli climatici abbiamo deciso di mantenere i dati stagionali, insieme al range delle temperature, la pendenza, il TRI ed il TPI, che sono risultate variabili non correlate tra di loro nelle 4 stagioni come si può vedere nel grafico d'esempio della primavera (Figura 5). Figura 3 - Grafico di correlazione tra le variabili a scala di 1000m. Le variabili rappresentate sono BIO10_01 – Temperatura media annua, BIO10_04 – Stagionalità della temperatura, BIO10_05 – Massima Temperatura del Mese più caldo, BIO10_06 – Minima Temperatura del Mese più freddo, BIO10_07 – Range delle temperature annuale (Massima – Minima), BIO10_12 – Precipitazione annua, BIO10_17 – Precipitazione della stagione più secca. L'indice di correlazione è indicato nel pannello superiore, il carattere della correlazione è proporzionale all'indice stesso (più è grande il testo più è grande la correlazione).

	6000 6500 7000		-250 -150 -50 0 50		500 1500 2500		0 1000 3000
BIO10_01	0.17	0.98	0.99	0.13	0.28	0.37	0.95
	BIO10_04	0.33	0.02	0.92	0.12	0.08	0.21
	7	BIO10_05	0.95	0.04	0.29	0.35	0.95
	*		BIO10_06	0.27	0.26	0.36	0.93
1		-	1	BIO10_07	0.06	0.06	0.07
	Å			Å	BIO10_12	0.87	0.15
	À			-		BIO10_17	0.23
0 2000 4000	Å						dem
-100 0 50 150		50 100 200		220 240 260 280		100 200 300 400 500	

Figura 4 - Grafico di correlazione tra le variabili a scala di 1000m. Le variabili rappresentate sono BIO10_01 – Temperatura media annua, BIO10_07 – Range delle temperature annuale (Massima – Minima), BIO10_12 – Precipitazione annua, PPTWIN Precipitazioni cumulate dei mesi invernali, PPTSPR Precipitazioni cumulate dei mesi primaverili, PPTSUM, Precipitazioni cumulate dei mesi estivi, PPTAUT Precipitazioni cumulate dei mesi autunnali, TMEDWIN Temperatura media dei mesi invernali, TMEDSPR Temperatura media dei mesi primaverili, TMEDSUM Temperatura media dei mesi estivi, TMEDAUT Temperatura media dei mesi autunnali. L'indice di correlazione è indicato nel pannello superiore, il carattere della correlazione è proporzionale all'indice stesso (più è grande il testo più è grande la correlazione).

	220 260		100 400		200 600		-200 -50 100	0	-50 50 200		0 2000		0 2000	
BIO10_01	0.13	0.28	0.29	0.27	0.30	0.14	1.00	1.00	1.00	1.00	0.95	0.12	0.25	0.31
220 280	BIO10_07	0.064	0.13	0.07	0.16	0.28	0.21	0.10	0.06	0.15	0.07	0.02	0.13	0.01
÷		BIO10_12	0.81	0.91	0.93	0.90	0.28	0.27	0.29	0.29	0.15	0.11	0.02	0.06
		1		0.54	0.71	0.62	0.27	0.28	0.30	0.29	0.17	0.10	0.02	0.09
4				PPTSPR	0.86	0.86	0.28	0.26	0.27	0.27	0.16	0.13	0:01	0.06
	4				PPTSUM	0.73	0.32	0.28	0.29	0.31	0.15	0.06	0.01	0.09
						PPTAUT2	0.12	0.14	0.17	0.14	0.07	0.11	0.01	0.02
	Y	-			-		TMEDWIN	0.99	0.99	1.00	0.94	0.11	0.26	0.32
	Y	-						TMEDSPR	1.00	1.00	0.95	0.12	0.25	0.31
05 120	Y							/	TMEDSUM	1.00	0.95	0.12	0.24	0.30
	7						/	/	/	TMEDAUT	0.95	0.12	0.25	0.31
0 300								*	~	*	dem	0.12	0.25	0.31
		()					•	•	•	•	•	TPI	0.11	0.02
							-			-		\checkmark		0.47
														SLOPE 8
-100 50		500 2000		100 400 700		200 600		-100 50		-100 50		-1000 500		0 20 40

Figura 5 - Grafico di correlazione tra le variabili selezionate per i modelli di distribuzione a scala di 1000m. Le variabili rappresentate sono BIO10_07 – Range delle temperature annuale, PPTSPR Precipitazioni cumulate dei mesi primaverili, TMEDSPR Temperatura media dei mesi primaverili, TPI (indice Topografico di Posizione), TRI (Indice di Asperità del Terreno) e SLOPE (Pendenza) L'indice di correlazione è indicato nel pannello superiore, il carattere della correlazione è proporzionale all'indice stesso (più è grande il testo più è grande la correlazione).

			-1000 0 500 1000		0 10 20 30 40
bio10_07	0.01	0.10	0.02	0.13	0.10
00 200 500 700	pptspr	0.26	0.13	0.03	0.06
		tmedspr	0. 12	0.25	0.31
			TPI	0.11	0.02
				TRI	0.47
0 10 20 10					SLOPE
220 240 260 280		-100 -50 0 50 100 150	6	0 1000 2000 3000 4000	

2.3.1 Risultati del Modello di Distribuzione dello Stambecco a scala 100x100 m

I modelli di distribuzione che sono stati realizzati hanno mostrato una eccellente capacità predittiva (Appendice II), evidenziando le relazioni tra maschi e femmine e le caratteristiche topografiche e l'uso del suolo dell'area di studio. I singoli modelli di idoneità stagionale e per sesso (Appendice IV) sono stati combinati per ottenere delle stime di idoneità massima, minima e media. Il risultato ha identificato una idoneità massima del 37.81% del territorio, con una media del 29.80 e una stima minima del 27.38% (Tabella 5). Tabella 5 - Tabella riassuntiva dei risultati dei modelli di idoneità suddivisi per stagoine e sesso degli indibvidui. MAX indica il numero massimo di pixel idonei nei 10 risultati, MED indica il numero medio di pixel idonei, MIN il numero minimo, ovvero il pixel doveva essere idoneo per tutti i 10 risultati. I relativi valori in percentuale sono calcolati rispetto al totale dell'area di studio. I valori in sfondo grigio si riferiscono alla situazione attuale, quelli in sfondo bianco si riferiscono alla proiezione futura. WM maschi in inverno, WF femmine in inverno, SPM maschi in primavera, SPF femmine in primavera, SUM maschi in estate, SUF femmine in estate, AUM maschi in autunno, AUF femmine in autunno.

	MAX	MED	MIN	NUMERO QUADRATI AREA DI	AREA DI STUDIO	MAX %	MED	MIN
				STUDIO	KM2		%	%
MICRO	611130	502628	418707	3691429	26046.72302	16.56	13.62	11.34
WM								
MICRO WF	577812	445185	344644	3691429	26046.72302	15.65	12.06	9.34
MICRO	732418	631483	493935	3691429	26046.72302	19.84	17.11	13.38
SPM								
MICRO SPF	773990	610220	550616	3691429	26046.72302	20.97	16.53	14.92
MICRO	1001591	916410	850217	3691429	26046.72302	27.13	24.83	23.03
SUM								
MICRO	810250	710028	618794	3691429	26046.72302	21.95	19.23	16.76
SUF								
MICRO	937301	875049	809462	3691429	26046.72302	25.39	23.70	21.93
AUM								
MICRO	892418	788361	697099	3691429	26046.72302	24.18	21.36	18.88
AUF								
IBEX	1395732	1099965	394869	3691429	26046.72302	37.81	29.80	10.7

Maschi in inverno

Il modello di distribuzione relativo ai maschi in inverno a scala 100x100m ha mostrato performance eccellenti, con valori dell'AUC dell'operatore ROC che variano tra 0.949 e 0.951, e valori del TSS che oscillano tra 0.762 e 0.771.

Le variabili più importanti sono l'altimetria (DEM), l'esposizione Nord (Northing), l'indice di asperità del terreno (TRI) e la pendenza (Figura 6).

L'altimetria (DEM) mostra una relazione quadratica con la presenza degli individui maschi della specie, con una probabilità crescente a quote comprese tra i 1500 e 2500 m, l'esposizione Nord ha una relazione negativa con la probabilità di presenza che degrada significativamente dal versante sud dove la probabilità di contatto è massima e il versante Nord dove la probabilità è minima. Il TRI, mostra valori di probabilità crescente al crescere del valore della variabile, ovvero in zone caratterizzate da una spiccata asperità del terreno, la pendenza ha una relazione positiva, con valori

di probabilità che crescono a partire da 20°. Tra le variabili di uso del suolo hanno un effetto positivo sulla probabilità di rinvenire individui le zone aperte con vegetazione rada o assente (CLC33) e risulta negativa la presenza di zone forestali (CLC31), anche se quest'ultima variabile ma poca importanza nel definire il modello. Il disturbo invernale risulta negativo ma con minima importanza nel definire il modello (Figura 7).

Figura 6 – Grafico a barre dell'importanza delle variabili dei 10 modelli di distribuzione degli individui di stambecco maschi per i mesi invernali. Il modello "Full" è stato testato e calibrato sull'intero dataset.

Figura 7 – Curve di risposta delle variabili dei 10 modelli di distribuzione degli individui di stambecco maschi per i mesi invernali.

Femmine in inverno

Il modello di distribuzione relativo alle femmine in inverno a scala 100x100 m ha performance eccellenti, con valori dell'AUC dell'operatore ROC che variano tra 0.951 e 0.955, e valori del TSS che oscillano tra 0.768 e 0.78.

Le variabili più importanti sono l'altimetria (DEM), l'esposizione Nord (Northing), l'indice di asperità del terreno (TRI) e la pendenza (Figura 8).

L'altimetria (DEM) ha una relazione quadratica con la presenza degli individui femmine della specie, con una probabilità crescente a quote comprese tra i 1300 e 2800 m, mostrando una probabilità di presenza più elevata per una fascia altitudinale più ampia rispetto ai maschi. L'esposizione Nord ha una relazione negativa con la probabilità di presenza che degrada significativamente dal versante sud dove la probabilità di contatto è massima e il versante Nord dove la probabilità è minima. Il TRI, mostra valori di probabilità crescente al crescere del valore della variabile, ovvero in zone caratterizzate da una spiccata asperità del terreno, la pendenza ha una relazione positiva, con valori di probabilità che crescono a partire da 20°. Tra le variabili di uso del suolo risultano avere un effetto positivo sulla probabilità di rinvenire individui le zone aperte con vegetazione rada o assente (CLC33) e risulta negativa la presenza di zone forestali (CLC31), anche se quest'ultima variabile ma poca importanza nel definire il modello. Il disturbo invernale risulta negativo ma con minima importanza nel definire il modello (Figura 9).

Figura 8 - Grafico a barre dell'importanza delle variabili dei 10 modelli di distribuzione degli individui di stambecco femmine per i mesi invernali. Il modello "Full" è stato testato e calibrato sull'intero dataset.

Figura 9 - Curve di risposta delle variabili dei 10 modelli di distribuzione degli individui di stambecco femmine per i mesi invernali.

Maschi in primavera

Il modello di distribuzione relativo ai maschi in primavera a scala 100x100 m ha performance eccellenti, con valori dell'AUC dell'operatore ROC che variano tra 0.935 e 0.94, e valori del TSS che oscillano tra 0.731 e 0.746.

Le variabili più importanti sono risultate l'altimetria (DEM), l'indice di asperità del terreno (TRI), l'esposizione Nord (Northing) e l'indice topografico del terreno (TPI) (Figura 10).

L'altimetria (DEM) mostra una relazione quadratica con la presenza degli individui maschi della specie, con una probabilità crescente a quote comprese tra i 1500 e 2800 m, l'esposizione Nord ha una relazione negativa con la probabilità di presenza che degrada significativamente dal versante sud dove la probabilità di contatto è massima e resta costante fino a diminuire rapidamente per i versanti esposti a Nord. Il TRI, mostra valori di probabilità crescente al crescere del valore della

variabile, raggiungendo un plateau in zone caratterizzate da una spiccata asperità del terreno, la pendenza in questo modello non è particolarmente significativa. La relazione con l'indice topografico del terreno (TPI) non è facile da descrivere. La probabilità di contatto degli individui in primavera raggiunge il minimo intorno a valori di -150, in zone che rappresentano delle conche, circondate da zone più elevate. I valori più negativi, invece che indicano zone a valle risultano più vocati, così come le zone pianeggianti (valori prossimi allo zero) e i crinali (valori positivi) (Figura 11). Tra le variabili di uso del suolo hanno un effetto positivo sulla probabilità di rinvenire individui le zone aperte con vegetazione rada o assente (CLC33) e le zone caratterizzate da vegetazione arbustiva e/o erbacea (CLC32), mentre risulta negativa la presenza di zone forestali (CLC31). Il disturbo legato ad attività antropiche invernali ha una minima importanza nel definire il modello (Figura 11).

Figura 10 - Grafico a barre dell'importanza delle variabili dei 10 modelli di distribuzione degli individui di stambecco maschi per i mesi primaverili. Il modello "Full" è stato testato e calibrato sull'intero dataset.

Femmine in primavera

Il modello di distribuzione relativo alle femmine in primavera a scala 100x100m ha performance eccellenti, con valori dell'AUC dell'operatore ROC che variano tra 0.936 e 0.943, e valori del TSS che oscillano tra 0.735 e 0.751.

Le variabili più importanti sono risultate l'altimetria (DEM), l'indice di asperità del terreno (TRI), l'esposizione Nord (Northing) e l'indice topografico del terreno (TPI) (Figura 12).

L'altimetria (DEM) mostra una relazione quadratica con la presenza degli individui femmine della specie, con una probabilità crescente a quote comprese tra i 1500 e 2800 m, l'esposizione Nord ha

una relazione negativa con la probabilità di presenza che degrada significativamente dai versanti esposti a sud dove la probabilità di contatto è massima e resta costante fino a diminuire rapidamente per i versanti esposti a Nord. Il TRI, mostra valori di probabilità crescente al crescere del valore della variabile, raggiungendo un plateau in zone caratterizzate da una spiccata asperità del terreno, la pendenza in questo modello non è particolarmente significativa. La relazione con l'indice topografico del terreno (TPI) raggiunge il massimo intorno a valori tra -100 e +100, ovvero in zone che rappresentano delle zone depresse o sopraelevate oppure pianeggianti. I valori più negativi, invece che indicano zone a valle risultano meno vocati così come i crinali (valori positivi più grandi). Tra le variabili di uso del suolo risulta negativa la presenza di zone forestali (CLC31). Il disturbo legato ad attività antropiche invernali ha una minima importanza nel definire il modello (Figura 13).

Figura 12 - Grafico a barre dell'importanza delle variabili dei 10 modelli di distribuzione degli individui di stambecco femmine per i mesi primaverili. Il modello "Full" è stato testato e calibrato sull'intero dataset.

Figura 13 - Curve di risposta delle variabili dei 10 modelli di distribuzione degli individui di stambecco femmine per i mesi primaverili.

Maschi in estate

Il modello di distribuzione relativo ai maschi in estate a scala 100x100m ha performance eccellenti, con valori dell'AUC dell'operatore ROC che variano tra 0.900 e 0.909, e valori del TSS che oscillano tra 0.681 e 0.695.

Le variabili più importanti sono risultate l'altimetria (DEM), che da sola ha oltre il 50% del peso nel definire il modello, seguita dalla categoria di uso del suolo delle zone aperte con vegetazione rada o assente (CLC33). Tutte le altre variabili hanno un contributo ridotto (Figura 14).

L'altimetria (DEM) mostra una relazione quadratica con la presenza degli individui maschi della specie, con una probabilità elevata a quote comprese tra i 2100 e 3100 m. Le altre variabili hanno

un contributo molto ridotto, fatta eccezione per l'uso del suolo. Il TRI, mostra valori di probabilità crescente al crescere del valore della variabile, raggiungendo un plateau in zone caratterizzate da una spiccata asperità del terreno, la pendenza in questo modello non è particolarmente significativa. Tra le variabili di uso del suolo risulta negativa la presenza di zone forestali (CLC31). Il disturbo legato ad attività antropiche estive (trekking, corsa e bici) ha un contributo marginale nel definire il modello (Figura 15).

Figura 14 - Grafico a barre dell'importanza delle variabili dei 10 modelli di distribuzione degli individui di stambecco maschi per i mesi estivi. Il modello "Full" è stato testato e calibrato sull'intero dataset.

Variable Importance

Figura 15 - Curve di risposta delle variabili dei 10 modelli di distribuzione degli individui di stambecco maschi per i mesi estivi.

Femmine in estate

Il modello di distribuzione relativo alle femmine di stambecco in estate a scala 100x100m ha performance eccellenti, con valori dell'AUC dell'operatore ROC che variano tra 0.93 e 0.935, e valori del TSS che oscillano tra 0.718 e 0.734.

Le variabili più importanti sono risultate l'altimetria (DEM), che da sola sfiora il 50% del peso nel definire il modello, seguita dalla categoria di uso del suolo delle zone aperte con vegetazione rada o assente (CLC33) e la pendenza. Tutte le altre variabili hanno un contributo ridotto (Figura 16). L'altimetria (DEM) mostra una relazione quadratica con la presenza degli individui femmine della specie, con una probabilità elevata a quote comprese tra i 2100 e 3100 m. Le altre variabili hanno un contributo molto ridotto, fatta eccezione per l'uso del suolo. Il TRI, mostra valori di probabilità crescente al crescere del valore della variabile, raggiungendo un plateau in zone caratterizzate da una spiccata asperità del terreno, la pendenza in questo modello non è particolarmente significativa. Tra le variabili di uso del suolo risulta negativa la presenza di zone forestali (CLC31). Il disturbo legato ad attività antropiche estive (trekking, corsa e bici) ha un contributo marginale nel definire il modello

(Figura 17).

Figura 16 - Grafico a barre dell'importanza delle variabili dei 10 modelli di distribuzione degli individui di stambecco maschi per i mesi estivi. Il modello "Full" è stato testato e calibrato sull'intero dataset.

Figura 17- Curve di risposta delle variabili dei 10 modelli di distribuzione degli individui di stambecco maschi per i mesi estivi.

Femmine nel periodo del parto e settimane successive

Il modello di distribuzione relativo alle femmine di stambecco nel periodo del parto e nelle settimane successive (metà maggio-fine di giugno) e a scala 100x100m ha performance eccellenti, con valori dell'AUC dell'operatore ROC che variano tra 0.908 e 0.916, e valori del TSS che oscillano tra 0.669 e 0.691.

Le variabili più importanti sono risultate l'altimetria (DEM), seguita dalla pendenza, dall'esposizione Nord e dalla categoria di uso del suolo delle zone aperte con vegetazione rada o assente (CLC33) (Figura 18).

L'altimetria (DEM) mostra una relazione bimodale con la presenza degli individui femmine della specie, con un primo picco di idoneità intorno ai 2000 m e un altro a 2800m. L'idoneità è più alta per i versanti esposti a sud e decresce verso nord. Il TRI mostra valori di probabilità crescente al crescere del valore della variabile, raggiungendo un plateau in zone caratterizzate da una spiccata asperità del terreno, la pendenza ha una relazione positiva o. Tra le variabili di uso del suolo risulta negativa la presenza di zone forestali (CLC31). Il disturbo legato ad attività antropiche estive (trekking, corsa e bici) ha un contributo marginale nel definire il modello (Figura 19).

Figura 18 - Curve di risposta delle variabili dei 10 modelli di distribuzione degli individui di stambecco maschi per i mesi estivi.

Figura 19 - Grafico a barre dell'importanza delle variabili dei 10 modelli di distribuzione degli individui di stambecco maschi per i mesi estivi. Il modello "Full" è stato testato e calibrato sull'intero dataset.

Maschi in autunno

Il modello di distribuzione relativo ai maschi di stambecco in autunno a scala 100x100m ha performance eccellenti, con valori dell'AUC dell'operatore ROC che variano tra 0.914 e 0.92, e valori del TSS che oscillano tra 0.691 e 0.708.

Le variabili più importanti sono risultate l'altimetria (DEM), seguita dall'indice di asperità del terreno (TRI), dalla pendenza e dalle categorie di uso del suolo (Figura 20).

L'altimetria (DEM) mostra una relazione quadratica con la presenza degli individui maschi della specie, con una probabilità elevata a quote comprese tra i 2000 e 3000 m. Il TRI, mostra valori di probabilità crescente al crescere del valore della variabile, raggiungendo un plateau in zone

caratterizzate da una spiccata asperità del terreno, la pendenza in questo modello non è particolarmente significativa. Tra le variabili di uso del suolo risulta negativa la presenza di zone forestali (CLC31) e positiva la presenza di zone caratterizzate da vegetazione arbustiva e/o erbacea (CLC32) e di zone aperte con vegetazione rada o assente (CLC33). Il disturbo legato ad attività antropiche estive (trekking, corsa e bici) ha un contributo marginale nel definire il modello (Figura 21).

Figura 20 - Grafico a barre dell'importanza delle variabili dei 10 modelli di distribuzione degli individui di stambecco maschi nei mesi autunnali. Il modello "Full" è stato testato e calibrato sull'intero dataset.

Femmine autunno

Il modello di distribuzione relativo alle femmine di stambecco in autunno a scala 100x100m ha performance eccellenti, con valori dell'AUC dell'operatore ROC che variano tra 0.925 e 0.929, e valori del TSS che oscillano tra 0.705 e 0.723.

Le variabili più importanti sono risultate l'altimetria (DEM), seguita dall'esposizione Nord, dalla pendenza, dalle categorie di uso del suolo e dall'indice di asperità del terreno (TRI) (Figura 22).

L'altimetria (DEM) mostra una relazione quadratica con la presenza degli individui femmine della specie, con una probabilità elevata a quote comprese tra i 1800 e 3000 m. In autunno le femmine

mostrano una predilezione per i versanti esposti a sud, molto più dei maschi nella stessa stagione. Il TRI, mostra valori di probabilità crescente al crescere del valore della variabile, raggiungendo il massimo in zone caratterizzate da una spiccata asperità del terreno, la pendenza in questo modello non è particolarmente significativa. Tra le variabili di uso del suolo risulta negativa la presenza di zone forestali (CLC31) e positiva la presenza di zone caratterizzate da vegetazione arbustiva e/o erbacea (CLC32) e di zone aperte con vegetazione rada o assente (CLC33). Il disturbo legato ad attività antropiche estive (trekking, corsa e bici) ha un contributo marginale nel definire il modello (Figura 23).

Figura 22 - Grafico a barre dell'importanza delle variabili dei 10 modelli di distribuzione degli individui di stambecco femmine nei mesi autunnali. Il modello "Full" è stato testato e calibrato sull'intero dataset.

Figura 23 - Curve di risposta delle variabili dei 10 modelli di distribuzione degli individui di stambecco femmine nei mesi autunnali.

2.3.2 Risultati del Modello di Distribuzione dello Stambecco a scala 600 x 600 m

Maschi in inverno

Il modello di distribuzione relativo ai maschi in inverno a scala 600 x 600m ha performance eccellenti, con valori dell'AUC dell'operatore ROC che variano tra 0.907 e 0.917, e valori del TSS che oscillano tra 0.631 e 0.658.

Le variabili più importanti sono risultate la Temperatura media invernale (TMEDWIN), seguita dal range di temperatura annuale (BIO10 07) e dalle variabili topografiche (Figura 24).

La temperatura media invernale mostra una relazione quadratica con la presenza degli individui maschi della specie, con una probabilità di rinvenire la specie tra -10 e 0°C. Il range di temperature annuale mostra una relazione bimodale, con due picchi, uno per i pixel che hanno un range di temperatura annuale che va da 24 a 26°C e un secondo picco tra 27 e 28°C. L'idoneità ambientale è elevata per le zone che hanno una precipitazione cumulata invernale che varia tra i 190 e 410 mm. Le variabili topografiche mostrano una relazione positiva con la pendenza, mentre la relazione con gli indici topografici è complessa e di difficile sintetizzazione.

(Figura 25).

Figura 25 - Curve di risposta delle variabili dei 10 modelli di distribuzione degli individui di stambecco maschi nei mesi invernali.

Femmine in inverno

Il modello di distribuzione relativo alle femmine in inverno a scala 600 x 600m ha performance eccellenti, con valori dell'AUC dell'operatore ROC che variano tra 0.916 e 0.929, e valori del TSS che oscillano tra 0.646 e 0.693.

Le variabili più importanti sono risultate la Temperatura media invernale (TMEDWIN), seguita dalla pendenza (SLOPE) (Figura 26).

La temperatura media invernale mostra una relazione quadratica con la presenza degli individui maschi della specie, con una probabilità massima di rinvenire la specie tra -10 e 0°C. La pendenza mostra una relazione con probabilità massima tra i 18 e 30°. Il range di temperature annuale mostra una relazione negativa per i valori di temperatura maggiori di 26°C. L'idoneità ambientale decresce per le aree mostrano una precipitazione cumulata invernale maggiore di 290 mm.

Il TRI, mostra una probabilità elevata tra valori di TRI compresi tra 1500 e 2500, ovvero zone caratterizzate da una spiccata asperità del terreno (Figura 27).

Figura 26 - Grafico a barre dell'importanza delle variabili dei 10 modelli di distribuzione degli individui di stambecco femmine nei mesi invernali. Il modello "Full" è stato testato e calibrato sull'intero dataset.

Figura 27 - Curve di risposta delle variabili dei 10 modelli di distribuzione degli individui di stambecco femmine nei mesi invernali.

Maschi in primavera

Il modello di distribuzione relativo ai maschi in primavera a scala 600 x 600m ha performance eccellenti, con valori dell'AUC dell'operatore ROC che variano tra 0.905 e 0.915, e valori del TSS che oscillano tra 0.623 e 0.655.

Le variabili più importanti sono risultate la Temperatura media primaverile (TMEDSPR), seguita dalla Precipitazione cumulata primaverile (PPTSPR), pendenza (SLOPE) e range annuale delle temperature. (Figura 28). La temperatura media primaverile mostra una relazione quadratica con la presenza degli individui maschi della specie, con una probabilità massima di rinvenire la specie tra -2 e 5°C. Le precipitazioni hanno un contributo negativo, con idoneità che crolla al di sopra di 230 mm di precipitazioni. La pendenza mostra una relazione con probabilità crescente al crescere della pendenza. Il range di temperature annuale mostra elevata idoneità per le zone con un range di temperature tra 24 e 28°C. L'idoneità ambientale decresce per le aree mostrano una precipitazione cumulata invernale maggiore di 290 mm.

Il TRI, mostra una probabilità elevata tra valori di TRI compresi tra 800 e 2500, ovvero zone caratterizzate da un'asperità del terreno media ed elevata (Figura 29).

Figura 28 - Grafico a barre dell'importanza delle variabili dei 10 modelli di distribuzione degli individui di stambecco maschi nei mesi primaverili. Il modello "Full" è stato testato e calibrato sull'intero dataset.

Figura 29 - Curve di risposta delle variabili dei 10 modelli di distribuzione degli individui di stambecco maschi nei mesi primaverili.

Femmine in primavera

Il modello di distribuzione relativo ai maschi in primavera a scala 600 x 600m ha performance eccellenti, con valori dell'AUC dell'operatore ROC che variano tra 0.909 e 0.915, e valori del TSS che oscillano tra 0.64 e 0.685.

Le variabili più importanti sono risultate la Temperatura media primaverile (TMEDSPR), seguita dalla Precipitazione cumulata primaverile (PPTSPR), pendenza (SLOPE) e range annuale delle temperature; TPI e TRI hanno un contributo limitato nel definire il modello (Figura 30).

La temperatura media primaverile mostra una relazione quadratica con la presenza degli individui femmine della specie, con una probabilità massima di rinvenire la specie tra 0 e 5°C. La relazione

con la pendenza mostra crescente idoneità fino a raggiungere valori massimi di idoneità per pendenze oltre i 29°. Le precipitazioni hanno un contributo negativo, con idoneità che crolla al di sopra di 230 mm di precipitazioni. L'idoneità è proporzionale alla pendenza, mentre il range delle temperature annuale mostra elevata idoneità per range fino a 26°C, per poi decrescere all'aumento del range di temperature (Figura 31).

Figura 30 - Grafico a barre dell'importanza delle variabili dei 10 modelli di distribuzione degli individui di stambecco femmine nei mesi primaverili. Il modello "Full" è stato testato e calibrato sull'intero dataset.

	RUN1
	RUN2
	RUN3
	RUN4
	RUN5
	RUN6
8	RUN7
	RUN8
	RUN9
	RUN10
	Full

Figura 31 - Curve di risposta delle variabili dei 10 modelli di distribuzione degli individui di stambecco femmine nei mesi primaverili.

Maschi in estate

Il modello di distribuzione relativo ai maschi in estate a scala 600 x 600m ha performance eccellenti, con valori dell'AUC dell'operatore ROC che variano tra 0.933 e 0.937, e valori del TSS che oscillano tra 0.714 e 0.733.

Le variabili più importanti sono risultate la Temperatura media estiva (TMEDSUM) che da sola mostra un'importanza di oltre il 50%, seguita dal range annuale delle temperature (BIO10_07) e dal TPI (Figura 32).

La temperatura media estiva mostra una relazione quadratica con la presenza degli individui maschi della specie, con una probabilità massima di rinvenire la specie tra 5 e 13°C. Il range di

temperature annuale mostra una relazione bimodale, con due picchi, uno per i pixel che hanno un range di temperatura annuale che va da 24 a 26°C e un secondo picco tra 27 e 28°C. La pendenza non mostra un trend definito, ma è interessante la relazione con l'indice di Posizione Topografico (TPI) che mostra una idoneità più bassa per i pixel che si collocano nelle zone pianeggianti e idoneità crescente verso le valli (valori negativi) e le creste (valori positivi) (Figura 33). Figura 32 - Grafico a barre dell'importanza delle variabili dei 10 modelli di distribuzione degli individui di stambecco maschi nei mesi estivi. Il modello "Full" è stato testato e calibrato sull'intero dataset.

Variable Importance

Figura 33 - Curve di risposta delle variabili dei 10 modelli di distribuzione degli individui di stambecco maschi nei mesi estivi.

Femmine in estate

Il modello di distribuzione relativo alle femmine in estate a scala 600 x 600m ha performance eccellenti, con valori dell'AUC dell'operatore ROC che variano tra 0.938 e 0.946, e valori del TSS che oscillano tra 0.743 e 0.761.

Le variabili più importanti sono risultate la Temperatura media estiva (TMEDSUM) che da sola mostra un'importanza che supera il 70%, seguita dal range annuale delle temperature (BIO10_07) e dalle precipitazioni cumulate estive (Figura 32).

La temperatura media estiva mostra una relazione quadratica con la presenza degli individui maschi della specie, con una probabilità massima di rinvenire la specie tra 5 e 11°C. Il range di temperature annuale mostra elevata idoneità fino a range di temperatura di 25°C, per poi

decrescere per valori di range di temperatura maggiori. Le precipitazioni cumulate mostrano elevata idoneità per valori superiori ai 310 mm (Figura 33).

Figura 34 - Grafico a barre dell'importanza delle variabili dei 10 modelli di distribuzione degli individui di stambecco femmine nei mesi estivi. Il modello "Full" è stato testato e calibrato sull'intero dataset.

Figura 35 - Curve di risposta delle variabili dei 10 modelli di distribuzione degli individui di stambecco femmine nei mesi estivi.

Maschi in autunno

Il modello di distribuzione relativo ai maschi in autunno a scala 600 x 600m ha performance eccellenti, con valori dell'AUC dell'operatore ROC che variano tra 0.92 e 0.93, e valori del TSS che oscillano tra 0.665 e 0.679.

Le variabili più importanti sono risultate la Temperatura media autunnale (TMEDAUT) che da sola mostra un'importanza di oltre il 50%, seguita dal range annuale delle temperature (BIO10_07) (Figura 36).

La temperatura media autunnale mostra una relazione quadratica con la presenza degli individui maschi della specie, con una probabilità massima di rinvenire la specie tra -3 e +5 °C. Il range di

temperature annuale mostra elevata idoneità fino a range di temperatura tra 24 e 26°C e poi mostra

altri due picchi a 27 e 28 °C (Figura 37).

Figura 36 Grafico a barre dell'importanza delle variabili dei 10 modelli di distribuzione degli individui di stambecco maschi nei mesi autunnali. Il modello "Full" è stato testato e calibrato sull'intero dataset.

Figura 37 - Curve di risposta delle variabili dei 10 modelli di distribuzione degli individui di stambecco maschi nei mesi autunnali.

Femmine in autunno

Il modello di distribuzione relativo alle femmine in autunno a scala 600 x 600m ha performance eccellenti, con valori dell'AUC dell'operatore ROC che variano tra 0.891 e 0.908, e valori del TSS che oscillano tra 0.613 e 0.663.

Le variabili più importanti sono risultate la Temperatura media autunnale (TMEDAUT) che da sola mostra un'importanza di oltre il 50%, seguita dal range annuale delle temperature (BIO10_07) (Figura 38).

La temperatura media autunnale mostra una relazione quadratica con la presenza degli individui femmine della specie, con una probabilità massima di rinvenire la specie tra -4 e +4 °C. Il range di temperature annuale mostra elevata idoneità fino a range di temperatura tra 24 e 26°C e poi mostra altri due picchi a 27 e 28 °C (Figura 39).

Figura 38 - Grafico a barre dell'importanza delle variabili dei 10 modelli di distribuzione degli individui di stambecco femmine nei mesi autunnali. Il modello "Full" è stato testato e calibrato sull'intero dataset.

Figura 39 - Curve di risposta delle variabili dei 10 modelli di distribuzione degli individui di stambecco femmine nei mesi autunnali.

PROIEZIONI

I risultati dei modelli di distribuzione dello stambecco con variabili climatiche sono stati proiettati secondo le previsioni dei modelli CMIP5, che promuove una serie standard di simulazioni di modelli al fine di valutare quanto sono realistici i modelli nel simulare il passato recente, fornire proiezioni sui futuri cambiamenti climatici su due scale temporali, a breve termine (fino a circa il 2035) e a lungo termine (fino a 2100 e oltre). È stato selezionato il modello RCP45 per gli anni 2041-2060, che rappresenta uno scenario intermedio, con un aumento delle temperature entro un range compreso tra 1.9 e 3.3°C a fronte di una stabilizzazione delle emissioni di CO₂ a 538 ppm entro il 2100.

I risultati dei modelli di distribuzione con le variabili climatiche hanno restituito una porzione di territorio vocata media che va da un minimo del 18.42% per le femmine in primavera ad un massimo del 24.09% per le femmine in autunno (Tabella 6). I risultati delle proiezioni hanno mostrato un minimo di superficie vocata media per i maschi in inverno (4.85%) ed un massimo del 18.05% per le femmine in autunno.

Tabella 6 - Tabella di confronto del numero di pixel ritenuti idonei per lo stambecco nei modelli climatici attuali e la proiezione secondo il modello RCP45 per gli anni 2041-2060. MAX indica il numero massimo di pixel idonei nei 10 risultati, MED indica il numero medio di pixel idonei, MIN il numero minimo, ovvero il pixel doveva essere idoneo per tutti i 10 risultati. I relativi valori in percentuale sono calcolati rispetto al totale dell'area di studio. I valori in sfondo grigio si riferiscono alla situazione attuale, quelli in sfondo bianco si riferiscono alla proiezione futura. I totali sono stati calcolati considerando idoneo un pixel idoneo in qualunque stagione per i modelli di maschi o di femmine. WM maschi in inverno, WF femmine in inverno, SPM maschi in primavera, SPF femmine in primavera, SUM maschi in estate, SUF femmine in estate, AUM maschi in autunno, AUF femmine in autunno.

SITUAZIONE	MAX	MED	MIN	N QUADRATI AREA	MAX	MED	MIN
ATTUALE				DI STUDIO	%	%	%
WM	17823	13498	8485	63776	27.95	21.16	13.30
WF	19316	11483	7599	63776	30.29	18.01	11.92
SPM	17925	13452	10155	63776	28.11	21.09	15.92
SPF	17391	11748	6393	63776	27.27	18.42	10.02
SUM	15306	13279	11793	63776	24.00	20.82	18.49
SUF	13239	11362	10023	63776	20.76	17.82	15.72
AUM	16710	14464	12203	63776	26.20	22.68	19.13
AUF	20732	15363	11245	63776	32.51	24.09	17.63
TOTALE	32858	24541	22475	63776	51.52	38.48	35.24
PROIEZIONE							
PROJ-WM	6843	3091	1373	63776	10.73	4.85	2.15
PROJ-WF	9802	4949	2446	63776	15.37	7.76	3.84
PROJ-SPM	9251	5446	2340	63776	14.51	8.54	3.67
PROJ-SPF	9200	5210	2156	63776	14.43	8.17	3.38
PROJ-SUM	9158	7671	6472	63776	14.36	12.03	10.15
PROJ-SUF	9427	5213	779	63776	14.78	8.17	1.22
PROJ-AUM	12064	9370	6171	63776	18.92	14.69	9.68
PROJ-AUF	15861	11512	7033	63776	24.87	18.05	11.03

	TOTALE	23638	18368	12739	63776	37.06	28.80	19.97
--	--------	-------	-------	-------	-------	-------	-------	-------

La proiezione effettuata evidenzia una marcata riduzione della superficie idonea ad ospitare lo stambecco sulle Alpi Occidentali (Tabella 7). Tale riduzione è stimata secondo uno scenario medio da un minimo del 33.66% per quanto riguarda i territori occupati dalle femmine in autunno ad un massimo del 77% per i territori idonei ai maschi in inverno. Complessivamente la riduzione media complessiva è del 25.15%, lo scenario più estensivo (MAX) mostra una riduzione del 28.06% mentre quello più parsimonioso (MIN) mostra una riduzione del 43.32% (Tabella 7, Fig 40a, b, c).

La riduzione prevista deriva dai cambianti di temperatura e di piovosità rispetto alla situazione attuale. Al momento non siamo in grado di prevedere se la specie mostrerà una tolleranza fisiologica all'aumento delle temperature, ma di fatto sono prevedibili importanti effetti negativi per quanto riguarda la disponibilità di risorse trofiche di qualità. Inoltre, è stato dimostrato che con l'aumentare della temperatura e della radiazione solare, lo stambecco tende a muoversi su altitudini più elevate dove tuttavia non è presente cibo di qualità (Aublet et al., 2009). Tale trend è ben rappresentato nella proiezione futura della distribuzione, dove risultano non idonee le zone a quote più basse e appaiono nuovi settori idonei. Tali zone sono classificate dalla mappa dell'uso del suolo prevalentemente come zone rocce nude, dove tuttavia non sono disponibili zone di alimentazione di qualità. Studi fatti a livello di popolazione hanno suggerito che la principale influenza del clima sulle dinamiche di popolazione ha effetti sia attraverso un'aumento della mortalità in inverno e all'inizio dell'estate oppure attraverso un effetto sulla fecondità (Grøtan et al. 2007).

Ad ogni modo è bene sottolineare che proiettare risposte di condizioni climatiche che non sono state ancora osservate nei dati storici è difficile (Stensethet al., 2002) e gli effetti nei cambiamenti di temperature e piovosità possono avere effetti imprevedibili. Ad esempio, piccole differenze di temperatura potrebbero portare a risposte molto diverse nella copertura nevosa nelle Alpi Nord-Occidentali. Così come, un inverno relativamente caldo potrebbe causare pioggia in alcune aree e forti nevicate in altre, portando a condizioni ambientali molto diverse tra aree geograficamente vicine (Mysterudet al., 2000).

Tabella 7 – Riduzione percentuale del numero di pixel predetti con la proiezione climatica del modello RCP45 per gli anni 2041-2060 rispetto alla situazione attuale. WM maschi in inverno, WF femmine in inverno, SPM maschi in primavera, SPF femmine in primavera, SUM maschi in estate, SUF femmine in estate, AUM maschi in autunno, AUF femmine in autunno. MAX si riferisce allo scenario più estensivo, dove ciascun pixel dei 10 modelli per sesso e stagione è stato ritenuto idoneo, MED si riferisce ad uno scenario medio, che ha ritenuto come idoneo almeno 5 pixel dei 10 modelli, MIN si riferisce ad un modello più conservativo che ha ritenuto idoneo solo i pixel idonei in tutti e 10 i modelli).

	% RID MAX	% RID MED	% RID MIN
PROJWM	61.61	77.10	83.82
PROJWF	49.25	56.90	67.81
PROJSPM	48.39	59.52	76.96
PROJSPF	47.10	55.65	66.28
PROJSUM	40.17	42.23	45.12
PROJSUF	28.79	54.12	92.23
PROJAUM	39.64	34.84	38.75
PROJAUF	29.82	33.66	38.72
TOTALE	28.06	25.15	43.32

Figura 40 - Riduzione di habitat vocato durante secondo le proiezioni del modello climatico RCP45.

A) scenario MAX (più estensivo) In verde scuro sono indicati i pixel del modello attuale che vengono persi nella proiezione futura, in verde chiaro i pixel idonei sia nel modello attuale che in quello futuro e in giallo le nuove aree vocate.

B) scenario MED (medio) In rosso sono indicati i pixel del modello attuale che vengono persi nella proiezione futura, in arancione i pixel idonei sia nel modello attuale che in quello futuro e in giallo le nuove aree vocate.

C) scenario MIN (conservativo) In blu sono indicati i pixel del modello attuale che vengono persi nella proiezione futura, in verde i pixel idonei sia nel modello attuale che in quello futuro e in giallo le nuove aree vocate.

3. Corridoi ecologici

3.1 Introduzione

Si ritiene che la frammentazione degli habitat abbia forti effetti negativi sulle popolazioni di specie riducendo la disponibilità dell'habitat e isolando i frammenti o le patch rimanenti (Bennett & Saunders, 2010). Pertanto, la connettività del paesaggio, ovvero "il grado in cui il paesaggio facilita o impedisce il movimento tra le risorse" (Taylor et al., 1993), è considerato un fattore importante per sostenere la biodiversità e la vitalità delle popolazioni animali (Crooks & Sanjayan, 2006). La conservazione delle reti ecologiche, ovvero gli insiemi interconnessi di elementi di habitat che consentono il movimento delle specie e aumentano le probabilità di sopravvivenza, sono quindi un obiettivo centrale nella pianificazione della conservazione (Jongman et al., 2011). Un modello

conveniente e popolare per concettualizzare e rappresentare le reti ecologiche è il "modello patchcorridoio-matrice" (Forman, 1995) che in genere considera tre elementi principali dell'habitat del paesaggio: a) patch dell'habitat - qualsiasi area discreta che viene utilizzata da una specie per riproduzione o ottenimento di altre risorse, come cibo e alloggio; b) corridoi - una zona a strisce che collega popolazioni di animali selvatici separate da attività o strutture umane, che consente uno scambio di individui tra popolazioni; e c) la matrice - definita come non habitat o la porzione di paesaggio in cui sono incorporate zone e corridoi di habitat. La valutazione della connettività del paesaggio e la mappatura delle reti di habitat sono passaggi chiave per l'individuazione di patch e corridoi ecologici adeguati per proteggere o ripristinare. Le principali difficoltà per identificare i corridoi ecologici di una specie risiedono nella necessità di misurare la connettività del paesaggio, che deve tenere in considerazione la struttura del paesaggio e le capacità di dispersione delle specie ed il loro comportamento (Calabrese & Fagan 2004, Tischendorf & Fahrig, 2000). In questo contesto si fa molto uso dei modelli di vocazionalità ambientale. Tali modelli, descritti nella sezione precedente si basano sul concetto di nicchia ecologica e analizzano statisticamente le relazioni ambiente e specie e possono essere quindi estrapolate per predire la distribuzione geografica della specie di interesse (Guisan & Zimmermann, 2000).

Se i risultati di un modello di idoneità ambientale di una specie sono in grado di predire le zone vocate ad una specie, l'inverso del modello di idoneità ambientale produrrà una mappa di resistenza ecologica, ovvero identificherà le zone meno idonee e più difficili da attraversare.

La progettazione di corridoi per una specie o un gruppo di specie consiste in almeno due passaggi quando si basa su modelli: la determinazione dei valori di attrito o di costo associati a diversi tipi di habitat e l'effettiva determinazione di percorsi che minimizzano i costi ovvero i Least Cost Path (LCP) (Schadt et al. 2002, Adriaensen et al.2003, Nikolakaki 2004, Ray et al. 2005, Epps et al 2007). L'uso di modelli di idoneità dell'habitat per l'identificazione dei corridoi ecologici per una specie si basa sull'assunto che esiste una correlazione tra la crescente probabilità di presenza di una specie in una determinata area e la permeabilità dell'habitat per la specie stessa. In altre parole, se un'area è vocata alla presenza della specie, questa sarà anche idonea al transito della specie stessa.

Dopo aver calcolato i percorsi a minimo costo (LCP) è necessario poi determinare la presenza di barriere nel percorso identificato. Un LCP non è ancora un corridoio funzionale, in quanto gli LCP vengono sempre calcolati, indipendentemente del costo finale, anche se nella realtà non sarebbero percorribili. Solo quando la presenza di barriere potenziali viene identificata sarà possibile validare il corridoio o eventualmente provvedere a rimuovere ostacoli e impiegare misure di conservazioni che siano efficaci, per esempio riducendo l'impatto di infrastrutture viarie (Seiler and Helldin 2006).

3.2 Materiali e metodi

Per identificare i corridoi ecologici e la connettività delle popolazioni di stambecco sono stati utilizzati i modelli di distribuzione prodotti nella sezione precedente a scala di 100x100 m.

Ogni modello stagionale per gli individui maschi e per le femmine è stato combinato per avere un valore medio per ciascun pixel, dove 0 indica nulla probabilità che il pixel sia adatto allo stambecco e il valore 100 indica massima probabilità che il pixel sia adatto alla specie, sulla base della vocazionalità stagionale. Il risultato è stato utilizzato come base per ottenere una mappa della resistenza ecologica (Resistenza = Massima idoneità meno idoneità dei pixel). La mappa della resistenza ecologica indica la resistenza del pixel all'insediamento e al transito di una specie ed ha valori minimi per le zone più vocate (resistenza bassa = facilità di movimento) e valori massimi per le zone meno vocate (elevata resistenza = difficoltà di movimento).

Come anticipato in precedenza un metodo utile per identificare i corridoi è attraverso lo sviluppo di percorsi dal minimo costo.

Questa tecnica modella il costo relativo per un animale che si muove tra due aree di habitat idoneo (Penrod et al. 2006). La distanza di costo è il prerequisito per trovare il percorso o il corridoio meno costoso. Le funzioni della distanza di costo sono simili alle funzioni euclidee, ma invece di calcolare la distanza effettiva da un punto all'altro, le funzioni di costo determinano la distanza ponderata più breve (o il costo di viaggio accumulato) da ciascuna cella alla cella più vicina nell'insieme delle celle di origine. Utilizzando il tool CorridorDesigner (Mauka et al. 2007) abbiamo utilizzato l'inverso dell'idoneità dell'habitat come una mappa di permeabilità e messo in collegamento le varie popolazioni di stambecco sull'arco alpino occidentale (Tabella 8, Figura 39). CorridorDesigner calcola il costo della distanza per ciascun pixel e sceglie un corridoio appropriato tra i possibili percorsi, offrendo come risultato corridoi di varia ampiezza.

Figura 41 – Localizzazione delle principali colonie di stambecco e relativa codifica desumibile dalla tabella 8)

Tabella 8 – Localizzazione delle principali colonie di stambecco sull'arco alpino nordoccidentale (fide A. Brambilla) e relativa codifica come da Figura 39.

ID	Localizzazione colonia	Stato
FRV04	Arve et Giffre	FR
FRV10	Sous-Dine	FR
FRV07	La Tournette	FR
FRV02	Encombres	FR
FRV17	Dent d'Ambin	FR
FRV13	Archeboc	FR
FRV14	Sassiere-Prariond	FR
FRV06	Champagny-Peisey	FR
FRV15	Valbonnais-Oisans	FR
FRU03	Vieux-Chaillol-Sirac	FR
FRU06	Queyras (Haut Guil - Ristolas)	FR
FRU07	Saint-Ours	FR
FRU04	Tete de l'Estrop	FR

FRU09	Aiguilles de Pelens	FR
FRV03	Aravis	FR
FRV09	Contamines - Beaufortain - Mont-Blanc	FR
FRV19	Chartreuse	FR
FRV12	Belledonne	FR
FRU02	Cerces - Galibier	FR
FRV18	Vercors (Gorges de la Bourne)	FR
FRV16	Vercors (sud-est)	FR
FRV01	Maurienne	FR
FRU01	Est Mercantour (Argentera)	FR
FRU10	Nord-ouest Mercantour	FR
FRU11	Parpaillon (Craevoux)	FR
FRV05	Bonneval-sur-Arc	FR
FRU05	Haute Ubaye (Font Sancte)	FR
FRV08	Bargy	FR
ITAO07	Valpelline - Valtournanche	ITA
ITAO08	Monte Rosa	ITA
ITAO05	Val Veny - Val Ferret	ITA
ITAO06	Gran S. Bernardo - Gr. Rochere	ITA
ITAO09	Tersiva	ITA
ITAO04	Rhemes	ITA
ITAO02	PNGP - Valsavarenche	ITA
ITAO03	PNGP - Val di Rhemes	ITA
ITAO01	PNGP - Val di Cogne	ITA
ITTO06	PNGP - Val Soana	ITA
ITTO05	PNGP - Valle dell'Orco	ITA
ITTO02	Rocciamelone - Lera	ITA
ITTO03	Rochemolles - Moncenisio	ITA
ITTO01	Val Pellice	ITA
ITCN01	Alpi Marittime	ITA
ITCN04	Bellino Rocca Bianca	ITA
ITTO08	Orsiera - Rocciavre	ITA
ITTO07	Germanasca - Massello - Troncea	ITA
ITCN06	Soustra Monviso	ITA

ITCN03	Provenzale M. Bellino	ITA
ITCN02	Meja Lago Nero	ITA
ITCN05	Pelvo d'Elva Porte di Roma	ITA
ITCN07	Valle Po	ITA
ITTO04	Valli di Lanzo	ITA

3.3 Risultati

L'analisi dei corridoi ecologici ha evidenziato una buona connettività dell'area di studio per la maggior parte delle popolazioni (Figura 42). Aree altamente vocate per lo stambecco sono in grado di mettere in connessione le varie popolazioni ad eccezione di due criticità rilevate, ovvero le popolazioni di Sous-Dine, La Tournette, Aravis e Bargy e quella di Chartreuse che risultano più isolate (Figura 43). Le infrastrutture viarie possono essere aggirate in cresta nella maggior parte dei casi e non costituiscono una reale barriera per la diffusione della specie.

Il fattore maggiormente limitante ad una connessione tra le popolazioni sembra essere piuttosto la bassa capacità di dispersione dello stambecco che solo in rari casi compie spostamenti significativi. Figura 42 - Cartografia dei corridoi (giallo, arancione e rosso) che collegano le varie popolazioni (verde chiaro). I cerchi in rosso identificano le popolazioni isolate

Figura 43 – Dettaglio delle di Sous-Dine, La Tournette, Aravis e Bargy (cerchio rosso in alto) e quella di Chartreuse (cerchio rosso in basso).

4. Impatto attività turistiche e sportive

Per valutare l'impatto delle attività antropiche sono state utilizzate le mappe dei percorsi sportivi desunti da Strava. Per l'inverno e la primavera sono state utilizzate le informazioni relative agli sport invernale, mentre per l'estate e l'autunno i percorsi bici, corsa e trekking.

Per ciascun fix GPS è stata calcolata la distanza al punto più vicino interessato da attività sportiva ed è stata anche annotata l'intensità. Per ciascuna stagione dell'anno è stata poi generato un set di punti random negli stessi range (altitudinali, di esposizione etc.) di presenza dello stambecco. Anche per i punti random è stata calcolata la distanza dal punto random alla potenziale fonte di disturbo antropico.

Sono stati quindi effettuati dei modelli lineari generalizzati misti binomiali, dove la probabilità di presenza dello stambecco è stata valutata rispetto ai punti random, in funzione della quota, della distanza dalla fonte di disturbo antropico, dell'intensità, dell'interazione tra sesso dell'individuo e distanza e del periodo del giorno. Le variabili sono state scalate e centrate. Per ciascuna di queste variabili sono state testate le funzioni quadratiche, sulla base dell'ispezione visuale degli scatterplot. Come fattore random è stato inserito l'individuo nidificato all'interno dell'area geografica che stava occupando. I vari modelli sono stati poi selezionati eliminando le variabili non significative. Analisi preliminari hanno mostrato che i fix dei singoli individui mostravano un'elevatissima autocorrelazione, sia temporale che spaziale. Pertanto, si è deciso di effettuare campionamenti random di 3 fix per settimana per individuo. Sono stati quindi generati 10 modelli, ognuno da un campionamento unico, per valutare la concordanza della relazione tra la probabilità di presenza dello stambecco e le variabili testate. I 10 modelli sono stati sottoposti ad una procedura di *model averaging*.

4.1 Modello invernale

I risultati del modello lineare generalizzato hanno mostrato un effetto quadratico della distanza da fonti di disturbo antropico e della quota ed una relazione negativa dell'intensità del disturbo (Tabella 9, Figura 44).

La probabilità di contattare uno stambecco rispetto ai punti random aumenta all'aumentare della distanza dalle zone interessate da attività sportiva invernale fino a raggiungere un massimo per poi diminuire. In particolare, la probabilità di contatto cresce passa da 0.6 a 0.75% da 0 a 2300 m di

distanza, dove raggiunge il massimo di probabilità, per poi decrescere per distanze superiori (Figura 45). Inoltre, la probabilità di contattare uno stambecco è maggiore qualora le zone interessate da attività sportiva abbiano intensità di frequentazione minore. La relazione con la quota mostra un massimo di probabilità intorno a 2050 m.

Questo risultato mostra chiaramente l'effetto del disturbo sulla distribuzione dello stambecco. Gli stambecchi evitano fonti di disturbo dovuto gli sport invernali. L'effetto quadratico probabilmente deriva dal fatto che un paesaggio adatto per le piste da sci (e più in generale altre attività antropica, come trekking) è anche un paesaggio adatto per gli stambecchi. Quindi, le aree distanti dalle piste sono probabilmente aree meno idonee per gli stambecchi.

Tabella 9 Media dei parametri dei 10 modelli della probabilità di presenza dello stambecco in funzione della distanza da aree interessate da attività sportiva invernale (SWINTERDISTANCE), intensità di utilizzo di queste aree (SINTENS_WINTER) e quota (SQUOTA).

	ESTIMATE	STD.ERROR	Z VALUE	PR(> Z)	SIG.
INTERCEPT	1.06557	0.11171	9.538	<2e-16	***
I(SWINTERDISTANCE^2)	-0.28103	0.0258	10.892	<2e-16	***
SWINTERDISTANCE	0.3808	0.04382	8.69	<2e-16	***
I(SQUOTA^2)	-1.38628	0.04057	34.17	<2e-16	***
SQUOTA	0.95995	0.04061	23.637	<2e-16	***
SINTENS_WINTER	-0.07799	0.02589	3.011	0.0026	**

Figura 44 - Grafico della media dei coefficienti calcolati sui 10 modelli. distanza da aree interessate da attività sportiva invernale (SWINTERDISTANCE), intensità di utilizzo di queste aree (SINTENS_WINTER) e quota (SQUOTA).

Figura 45 – Grafico della relazione tra probabilità di presenza dello stambecco e distanza da aree interessate da attività sportiva invernale (sWinterDistance), intensità di disturbo delle aree (sIntens_winter) e quota (sQuota)

4.2 Modello primaverile

I risultati del modello lineare generalizzato hanno mostrato un effetto quadratico della distanza da fonti di disturbo antropico e della quota dell'intensità del disturbo (Tabella 10, Figura 46). La probabilità di contattare uno stambecco rispetto ai punti random aumenta all'aumentare della distanza dalle zone interessate da attività sportiva fino a raggiungere un massimo per poi diminuire. In particolare, la probabilità di contatto cresce raggiungendo il massimo da 0 a 480 m di distanza, per poi decrescere per distanze superiori (Figura 47). Comunque, la forma della relazione nonlineare è molto meno marcato di quella in inverno. Inoltre, la relazione con la quota mostra un massimo di probabilità intorno a 2100 m. La persistenza dell'effetto non lineare con la distanza, anche se generalmente meno marcato, suggerisce che c'è una sorta di sovrapposizione tra l'habitat

ottimale degli stambecchi e i luoghi interessati da attività sportiva anche in primavera, ovvero principalmente strade bianche e sentieri.

Tabella 10 - Media dei parametri dei 10 modelli della probabilità di presenza dello stambecco in funzione della distanza da aree interessate da attività sportiva primaverile (SSSA_DISTANCE), intensità di utilizzo di queste aree (SINTENS_SSA) e quota (SQUOTA).

	ESTIMATE	STD.ERROR	Z VALUE	E PR(>	z) SIG.	
(INTERCEPT)	0.793512	0.002482	319.49	<2e-16	* * *	
I(SSSA_DISTANCE^2)	-0.13702	0.002384	57.45	<2e-16	* * *	
SSSA_DISTANCE	0.093281	0.002539	36.72	<2e-16	* * *	
I(SQUOTA^2)	-2.66365	0.002433	1094.3	<2e-16	***	
SQUOTA	2.435303	0.002575	945.44	<2e-16	* * *	
I(SINTENS_SSA^2)	-0.08116	0.002377	34.13	<2e-16	***	
SINTENS_SSA	0.035674	0.002585	13.79	<2e-16	***	

Figura 46 - Grafico della media dei coefficienti calcolati sui 10 modelli. distanza da aree interessate da attività sportiva primaverile (SSSA_DISTANCE), intensità di utilizzo di queste aree (SINTENS_SSA) e quota (SQUOTA).

Figura 47 - Grafico della relazione tra probabilità di presenza dello stambecco e distanza da aree interessate da attività sportiva primaverile (SSSA_DISTANCE), intensità di utilizzo di queste aree (SINTENS_SSA) e quota (SQUOTA).

4.3 Modello estivo

I risultati del modello lineare generalizzato hanno mostrato un effetto quadratico della distanza da fonti di disturbo antropico in estate e della quota dell'intensità del disturbo (Tabella 11, Figura 48). La probabilità di contattare uno stambecco rispetto ai punti random decresce all'aumentare della distanza dalle zone interessate da attività sportiva (Figura 49). La forma della relazione non-lineare è molto meno marcato di quella in inverno. La relazione con la quota mostra un massimo di probabilità intorno a 2700 m. Anche in estate assistiamo ad una marcata sovrapposizione tra l'habitat ottimale degli stambecchi e i luoghi interessati da attività sportiva. In questa stagione tuttavia il disturbo sembra in generale maggiormente tollerato.

	ESTIMATE	STD.ERROR	Z VALUE	PR(> Z)	SIG.
(INTERCEPT)	0.23055	0.08814	2.615	0.00892	**
I(SSSA_DISTANCE^2)	-0.12218	0.02571	4.752	2.01E-06	***
SSSA_DISTANCE	-0.06032	0.0555	1.087	0.27722	
I(SQUOTA^2)	-1.44483	0.08614	16.771	2.00E-16	***
SQUOTA	2.86663	0.09849	29.102	2.00E-16	***
I(SINTENS_SSA^2)	-0.13171	0.02642	4.985	6.20E-07	***
SINTENS_SSA	0.1413	0.0569	2.483	0.01304	*

Tabella 11 - Media dei parametri dei 10 modelli della probabilità di presenza dello stambecco in funzione della distanza da aree interessate da attività sportiva estiva (SSSA_DISTANCE), intensità di utilizzo di queste aree (SINTENS_SSA) e quota (SQUOTA).

Figura 48 - Grafico della media dei coefficienti calcolati sui 10 modelli. distanza da aree interessate da attività sportiva estiva (SSSA_DISTANCE), intensità di utilizzo di queste aree (SINTENS_SSA) e quota (SQUOTA).

Figura 49 Grafico della relazione tra probabilità di presenza dello stambecco e distanza da aree interessate da attività sportiva estiva (SSSA_DISTANCE), intensità di utilizzo di queste aree (SINTENS_SSA) e quota (SQUOTA).

4.3 Modello autunnale

I risultati del modello lineare generalizzato hanno mostrato un effetto quadratico della distanza da fonti di disturbo antropico in autunno e della quota dell'intensità del disturbo (Tabella 12, Figura 50). La probabilità di contattare uno stambecco rispetto ai punti random decresce all'aumentare della distanza dalle zone interessate da attività sportiva (Figura 51).

La relazione con la quota mostra un massimo di probabilità intorno a 2600 m. Anche in estate assistiamo ad una marcata sovrapposizione tra l'habitat ottimale degli stambecchi e i luoghi interessati da attività sportiva. In questa stagione tuttavia il disturbo sembra in generale maggiormente tollerato.

	ESTIMATE	STD.ERROR	Z VALUE	PR(> Z)	
(INTERCEPT)	0.69115	0.23776	2.907	0.00365	**
I(SSSA_DISTANCE^2)	-0.24521	0.0201	12.198	<2e-16	***
SSSA_DISTANCE	0.3422	0.03912	8.747	<2e-16	***
I(SQUOTA^2)	-1.27401	0.04651	27.388	<2e-16	***
SQUOTA	1.95078	0.05608	34.78	<2e-16	***
I(SINTENS_SSA^2)	-0.17125	0.02401	7.131	<2e-16	***
SINTENS_SSA	0.22961	0.04303	5.335	9.50E-08	* * *

Tabella 12 - Media dei parametri dei 10 modelli della probabilità di presenza dello stambecco in funzione della distanza da aree interessate da attività sportiva estiva (SSSA_DISTANCE), intensità di utilizzo di queste aree (SINTENS_SSA) e quota (SQUOTA).

Figura 50 - Grafico della media dei coefficienti calcolati sui 10 modelli. distanza da aree interessate da attività sportiva estiva (SSSA_DISTANCE), intensità di utilizzo di queste aree (SINTENS_SSA) e quota (SQUOTA).

Figura 51 - Grafico della relazione tra probabilità di presenza dello stambecco e distanza da aree interessate da attività sportiva autunnale (SSSA_DISTANCE), intensità di utilizzo di queste aree (SINTENS_SSA) e quota (SQUOTA).

4.4 Modello del periodo Lock-Down

I dati dei collari continuano a trasmettere e abbiamo approfittato dalla chiusura precauzionale forzata delle attività antropiche non essenziali per testare se durante i mesi di marzo ed aprile si fosse rilevato qualche cambiamento nel pattern spaziale degli stambecchi tracciati. Pertanto, sono stati selezionati solo gli stambecchi con collari attivi sia nel 2019 che nel 2020. Per questi individui è stato analizzato se la probabilità di contatto in funzione della distanza da zone normalmente soggette ad attività sportiva fosse differente nel 2020 rispetto all'anno precedente, rispetto a punti random. Per fare questo sono stati creati quattro gruppi temporali: Gennaio e Febbraio 2019, Marzo e Aprile 2019, Gennaio e Febbraio 2020 e Marzo e Aprile 2020, identificato come periodo del lockdown. Sono stati quindi effettuati dei modelli lineari generalizzati misti binomiali, dove la probabilità di presenza dello stambecco è stata valutata rispetto ai punti random, in funzione della quota, della distanza dalla fonte di disturbo antropico, dell'intensità, dell'interazione tra sesso dell'individuo e distanza e del periodo del giorno. Le variabili sono state scalate e centrate. Per ciascuna di queste variabili sono state testate le funzioni quadratiche. Come fattore random è stato inserito l'individuo nidificato all'interno dell'area geografica che stava occupando. I vari modelli sono stati poi selezionati eliminando le variabili non significative. Analisi preliminari hanno mostrato che i fix dei singoli individui mostravano un'elevatissima autocorrelazione, sia temporale che spaziale. Pertanto, si è deciso di effettuare campionamenti random di 3 fix per settimana per individuo. Sono stati quindi generati 10 modelli per valutare la concordanza della relazione tra la probabilità di presenza dello stambecco e le variabili testate. I 10 modelli sono stati sottoposti ad una procedura di *model averaging*.

Il risultato del modello mostra un effetto significativo dell'interazione tra periodo e distanza da ambienti dove solitamente si pratica attività sportiva invernale. Questa differenza, tuttavia, non è statisticamente significativa tra il periodo del lockdown e lo stesso periodo dell'anno precedente (Figura 52). Sussistono differenze significative tra il periodo di riferimento (Marzo e Aprile 2019) e Gennaio e Febbraio sia del 2019 che del 2020, spiegabili come variazioni stagionali della specie (Figura 53).

Questo risultato non corrobora la nostra ipotesi iniziale che ci sia un effetto diretto del disturbo antropico sulla distribuzione dello stambecco che sia venuto meno durante il periodo di Lockdown. Gli stambecchi hanno mantenuto le stesse distanze dalle zone dove si praticavano attività sportive invernali in assenza di disturbo antropico.

Tabella 13 - Media dei parametri dei 10 modelli della probabilità di presenza dello stambecco in funzione della distanza da aree interessate da attività sportiva invernale (DISTANZA) e quota (QUOTA) nei mesi di Marzo-Aprile 2019 (livello di riferimento) e 2020 (COVIDLOCKDOWN) e nei mesi di Gennaio e Febbraio 2019 (COVIDCONTROLJF) e 2020 (COVID202JF).

	ESTIMATE	SE	Z VALUE	PR(> Z)	SIG.
(INTERCEPT)	1.89085	0.18858	10.023	2.00E-16	***
DISTANZA^2	0.18051	0.03996	4.515	6.30E-06	***
DISTANZA	-0.68175	0.1709	3.987	6.68E-05	***
QUOTA^2	-1.437	0.0762	18.851	2.00E-16	***
QUOTA	0.92723	0.08131	11.399	2.00E-16	***
COVIDLOCKDOWN:DISTANZA^2	0.10103	0.05814	1.737	0.0824	•
COVIDCONTROLJF:DISTANZA^2	-0.24023	0.10497	2.287	0.0222	*
COVID2020JF:DISTANZA^2	-0.39079	0.09453	4.132	3.59E-05	***
COVIDLOCKDOWN:DISTANZA	0.14539	0.21928	0.663	0.5075	
COVIDCONTROLJF:DISTANZA	1.29472	0.25586	5.058	4.00E-07	***
COVID2020JF:DISTANZA	1.5296	0.25427	6.013	2.00E-16	***

Figura 52 – Grafico della media dei coefficienti calcolati sui 10 modelli. Distanza da aree interessate da attività sportiva invernale (sDISTANCE) e quota (sQUOTA) nei mesi di Marzo-Aprile 2019 (livello di riferimento) e 2020 (COVIDLOCKDOWN) e nei mesi di Gennaio e Febbraio 2019 (COVIDCONTROLIF) e 2020 (COVID202JF).

Figura 53 Grafico della relazione tra probabilità di presenza dello stambecco della distanza da aree interessate da attività sportiva invernale (DISTANZA) e quota (QUOTA) nei mesi di Marzo-Aprile 2019 (livello di riferimento) e 2020 (COVIDLOCKDOWN) e nei mesi di Gennaio e Febbraio 2019 (COVIDCONTROLIF) e 2020 (COVID202IF).

4.5 Interazione con attività di Eliski

L'Eliski è una pratica molto diffusa sulle Alpi Nord Occidentali. Utilizzando un elicottero gli sciatori alpinisti raggiungono aree remote dove affrontare la discesa.

Questo tipo di attività costituiscono una duplice fonte di disturbo. La prima è costituita da sciatori che accedono ad aree altrimenti non raggiungibili e la seconda è dovuta al rumore generato dalle pale dell'elicottero.

Tale tipologia di attività può avere impatti significativamente negativi per le specie alpine, influenzando la fisiologia e il comportamento degli animali selvatici.

Un recente studio ha dimostrato che il comportamento dello stambecco alpino è influenzato sia durante che dopo i sorvoli dell'elicottero. Il disturbo ha avuto effetti comportamentali che si sono susseguiti per tutto il giorno dall'evento di sorvolo, modificandone i ritmi di attività e la ricerca di cibo (Brambilla & Brivio 2018).

Per valutare la possibile interazione tra l'uso dell'habitat dello stambecco e l'attività di eliski, abbiamo raccolto informazioni su tracciati e piazzole di partenza e siti di arrivo usati dagli elicotteri che praticano eliski in Valle Susa. I dati sono stati fornito dall'Ente di Gestione dei Parchi delle Alpi Cozie. Dal momento che nessun animale radiocollarato ha frequentato la zona interessata dall'attività di eliski di cui avevamo a disposizione i tracciati è stata sovrapposta la mappa di idoneità ambientale ottenuta nelle sezioni precedenti. Un'analisi qualitativa mostra come le zone di arrivo degli elicotteri di eliski siano altamente vocate per lo stambecco, così come l'intero tracciato sciistico di Sauze d'Oulx e alcuni tratti dell'area nei dintorni di Sestriere (Fig. 54)

I dati in nostro possesso non consentono di eseguire ulteriori approfondimenti analitici, ma da quanto sopra esposto si può concludere che sia presente il rischio di un disturbo potenziale dall'attività di eliski da approfondire localmente.

4.6 Interazione con il pascolo

Il pascolo di ungulati domestici sulle Alpi durante il periodo estivo può determinare una serie di effetti negativi quali erosione del suolo e disturbo alla fauna. La presenza di bovini e ovini domestici può anche determinare criticità dal punto di vista sanitario con diffusione di numerosi patogeni. Per valutare le possibili interazioni tra gli stambecchi e il disturbo arrecato dal pascolo di animali domestici sono stati analizzati i dati degli alpeggi e degli animali monticanti reperiti dall'Ente di Gestione dei Parchi delle Alpi Cozie. Le localizzazioni GPS degli animali radiocollarati sono state sovrapposte alla cartografia degli alpeggi forniti (Figura 55) selezionando i punti che ricadevano all'interno degli alpeggi nei mesi estivi. Da questa selezione sono stati selezionati 3781 dati che si riferiscono a 12 stambecchi. Gli alpeggi che hanno ospitato gli stambecchi con collare GPS sono 17 di cui 14 con animali domestici pascolanti, mentre tre non sono interessati dal pascolo di ungulati domestici (Tabella 14). Figura 54 – Cartografia delle zone interessate da attività di eliski (nero) con i principali tracciati di sci alpinismo (rosso) sovrapposti al modello invernale dello stambecco.

Figura 55 – Cartografia degli alpeggi nel SIC Val Troncea e nel Parco dell'Orsiera e dei fix degli stambecchi

Tabella 14 - Elenco degli alpeggi utilizzati nell'analisi, relativa codifica e Comune di riferimento e numero di ovicaprini e bovini monticanti.

SIC VAL TRONCEA

ALPEGGIO	CODICE	COMUNE	OVICAPRINI	BOVINI
MEIS	201TO03P	PRAGELATO		330
TRONCEA	201TO01P	PRAGELATO	5	428
PIS-LAUSUN	145TO03P	MASSELLO	981	82
GHINIVERT	145TO02P	MASSELLO	320	23
CRETOVE	103TO07P	FENESTRELLE	353	
CONSORZIO	103TO18P	FENESTRELLE		187
ALBERGIAN				
PENNA-VIALET-CIUVIN	234TO02P	SALZA PINEROLO	492	35
CHIADO'		MASSELLO	0	0
VALTRONCEA		PRAGELATO	0	0

PARCO UNJIERA				
ALPEGGIO	CODICE	COMUNE	OVICAPRINI	BOVINI
OVINI UNIFICATO	281TO21P	USSEAUX	1156	
SELLERIES - JOUGLARD	227TO19P	ROURE	1000	105
BALMETTA NUOVA	044TO02P	BUSSOLENO		69
BALMETTA VECCHIA	044TO01P	BUSSOLENO		161
ORSIERA	147TO04P	MATTIE		108
BALMA	089TO05P	COAZZE		43
ROCCIAVRE	089TO07P	COAZZE		70
ORSIERA NO PASCOLO			0	0

I dati in nostro possesso non consentono di effettuare un'analisi diretta dell'eventuale disturbo arrecato dagli ungulati domestici agli stambecchi.

Per prima cosa abbiamo unito gli shapefile degli alpeggi e li abbiamo classificati sulla base della presenza di pascolo di ungulati domestici. Successivamente abbiamo ottenuto variabili topografiche di quota, pendenza, ed esposizione Nord ed Est per gli alpeggi pascolati e per quelli non pascolati. Le stesse variabili sono state estratte per ciascun fix GPS dei 12 stambecchi analizzati.

Successivamente abbiamo verificato eventuali differenze dovute alla localizzazione degli alpeggi pascolati e non pascolati tramite un boxplot. Lo stesso boxplot è stato poi prodotto per visualizzare eventuali differenze tra i fix localizzati negli alpeggi pascolati da animali domestici e in quelli non pascolati.

Infine, dopo aver verificato che le due aree erano confrontabili abbiamo condotto un modello lineare generalizzato misto, in cui abbiamo verificato se ci fossero differenze significative in quota, esposizione e pendenza tra i fix degli individui di stambecco presenti nelle zone pascolate da ungulati domestici e in quelle non pascolate, specificando come fattore random il nome dello stambecco, per correggere per eventuali differenze comportamentali individuali.

Gli alpeggi che abbiamo preso in considerazione hanno ospitato un minimo di 5 ovicaprini ed un massimo di 1156, mentre per i bovini le quote di animali monticanti variava tra un minimo di 23 animali e un massimo di 428. Il confronto tra le aree pascolate e non pascolate non ha rilevato evidenti differenze in termini di quota, esposizione e pendenza tra le aree pascolate e non pascolate (Figura 56).

Figura 56 – Boxplot della quota, dell'esposizione Nord ed Est e della pendenza negli alpeggi pascolati e in quelli non pascolati.

Quota

Esposizione Nord

1.0

0.5

0.0

-0.5

1.0

Area non pascolata

Esposizione

Pendenza

I risultati del GLMM hanno evidenziato che i fix degli stambecchi che frequentano le zone pascolate sono a quote più elevate, esposti più frequentemente a Sud (relazione negativa con il Nord) e a Ovest (relazione negativa con l'Est) e a pendenze più elevate rispetto ai fix degli stambecchi nelle zone non pascolate da ungulati domestici (Tabella 15, Figura 55).

Considerando l'assenza di evidenti differenze topografiche tra i siti pascolati e non pascolati presi in esame, è presumibile che nelle zone pascolate da ungulati domestici siano presenti fattori di disturbo, legati a competizione o al disturbo antropico diretto o indiretto che determinano un cambiamento nella selezione dell'habitat evidenziato dalla relazione con le variabili topografiche. Nei siti pascolati gli stambecchi utilizzano aree a quote più elevate e maggiormente esposti a sud e a ovest. Tali risultati sono tuttavia da interpretare con cautela e da approfondire localmente, confrontando ad esempio gli spostamenti degli ungulati domestici e degli stambecchi, per verificare pattern di movimenti peculiari nelle zone pascolate, diversi da quelli nelle zone dove non si pratica il pascolo e per escludere altre possibili cause che determinano la relazione osservata.

Tabella 15 – Risultati del GLMM che ha confrontato i fix presenti nei pascoli con quelli presenti nelle zone non pascolate in funzione della quota, dell'esposizione e della pendenza

	ESTIMATE	STD.ERROR	Z VALUE	PR(> Z)	
(INTERCEPT)	3.61924	1.7495	2.069	0.0386	*
QUOTA	0.31032	0.08766	3.54	0.0004	***
NORTHING	-1.2623	0.13573	-9.3	2.00E-16	***
EASTING	-0.9136	0.14294	-6.391	1.64E-10	***
PENDENZA	0.22281	0.08805	2.531	0.0114	*

Figura 57 – Visualizzazione grafica del modello che ha confrontato i fix presenti nei pascoli con quelli presenti nelle zone non pascolate in funzione della quota, dell'esposizione e della pendenza

Ringraziamenti

Desideriamo ringraziare Alice Brambilla per aver fornito gli shapefile delle popolazioni di stambecco nell'Area di Studio. Ringraziamo l'Ente di Gestione dei Parchi delle Alpi Cozie, in particolare Luca Maurino, Domenico Rosselli, Bruno Aimone e Michele Ottino per il continuo supporto e per l'aiuto nel reperire i dati dell'attività di eliski e degli alpeggi. Ringraziamo la Direzione Ambiente, Energia e Territorio – Settore Biodiversità e aree naturali per aver fornito i dati presenti sul Portale Aves.Piemonte. Infine vogliamo ringraziare Remy Moine e Ludovic Imberdis per il costruttivo confronto durante l'esecuzione di questo lavoro.

5. Bibliografia

- Acevedo, P., & Cassinello, J. (2009). Biology, ecology and status of Iberian ibex Capra pyrenaica: a critical review and research prospectus. *Mammal Review*, *39*(1), 17–32. doi: <u>10.1111/j.1365-</u> <u>2907.2008.00138.x</u>
- Adriaensen, F., Chardon, J. P., De Blust, G., Swinnen, E., Villalba, S., Gulinck, H., & Matthysen, E. (2003). The application of 'least-cost' modelling as a functional landscape model. *Landscape and Urban Planning*, *64*(4), 233–247. doi: <u>10.1016/S0169-2046(02)00242-6</u>
- Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). *Journal of Applied Ecology*, *43*(6), 1223–1232. doi: <u>10.1111/j.1365-2664.2006.01214.x</u>
- Araújo, M. B., Pearson, R. G., Thuiller, W., & Erhard, M. (2005). Validation of species–climate impact models under climate change. *Global Change Biology*, 11(9), 1504–1513. doi: <u>10.1111/j.1365-</u> <u>2486.2005.01000.x</u>
- Aublet, J.-F., Festa-Bianchet, M., Bergero, D., & Bassano, B. (2009). Temperature constraints on foraging behaviour of male Alpine ibex (Capra ibex) in summer. *Oecologia*, 159(1), 237–247. doi: <u>10.1007/s00442-008-1198-4</u>
- Baldwin, R. A. (2009). Use of Maximum Entropy Modeling in Wildlife Research. *Entropy*, *11*(4), 854–866. doi: <u>10.3390/e11040854</u>
- Beier, P., & Noss, R. F. (1998). Do Habitat Corridors Provide Connectivity? *Conservation Biology*, *12*(6), 1241–1252. doi: <u>10.1111/j.1523-1739.1998.98036.x</u>
- Bennett, A. F., & Saunders, D. A. (n.d.). Habitat fragmentation and landscape change. In Conservation Biology for All. Retrieved from <u>https://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199554232.001.0001/acp</u> <u>rof-9780199554232-chapter-6</u>
- Bon, R., Rideau, C., Villaret, J.-C., & Joachim, J. (2001). Segregation is not only a matter of sex in Alpine ibex, Capra ibex ibex. *Animal Behaviour*, *62*(3), 495–504. doi: <u>10.1006/anbe.2001.1776</u>
- Braga, R. F., Carvalho, R., Andresen, E., Anjos, D. V., Alves-Silva, E., & Louzada, J. (2017). Quantification of four different post-dispersal seed deposition patterns after dung beetle activity. *Journal of Tropical Ecology*, 33(6), 407–410. doi: <u>10.1017/S0266467417000335</u>
- Brambilla, A., & Brivio, F. (2018). Assessing the effects of helicopter disturbance in a mountain ungulate on different time scales. *Mammalian Biology*, 90, 30–37. doi: <u>10.1016/j.mambio.2018.02.001</u>

- Brotons, L., Thuiller, W., Araújo, M. B., & Hirzel, A. H. (2004). Presence-absence versus presenceonly modelling methods for predicting bird habitat suitability. *Ecography*, *27*(4), 437–448. doi: 10.1111/j.0906-7590.2004.03764.x
- Calabrese, J. M., & Fagan, W. F. (2004). A comparison-shopper's guide to connectivity metrics. *Frontiers in Ecology and the Environment*, 2(10), 529–536. doi: <u>10.1890/1540-</u> <u>9295(2004)002[0529:ACGTCM]2.0.CO;2</u>
- Crooks, K. R., Sanjayan, M. A., & 1966-. (2006). *Connectivity conservation*. Retrieved from https://agris.fao.org/agris-search/search.do?recordID=US201300119392
- Elith*, J., Graham*, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., ... Zimmermann, N. E. (2006). Novel methods improve prediction of species' distributions from occurrence data. *Ecography*, 29(2), 129–151. doi: <u>10.1111/j.2006.0906-7590.04596.x</u>
- Elith, J., & Leathwick, J. R. (2009). Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. *Annual Review of Ecology, Evolution, and Systematics*, 40(1), 677–697.
 doi: <u>10.1146/annurev.ecolsys.110308.120159</u>
- Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. *Diversity and Distributions*, 17(1), 43–57. doi: <u>10.1111/j.1472-</u> <u>4642.2010.00725.x</u>
- Epps, C. W., Wehausen, J. D., Bleich, V. C., Torres, S. G., & Brashares, J. S. (2007). Optimizing dispersal and corridor models using landscape genetics. *Journal of Applied Ecology*, 44(4), 714–724. doi: <u>10.1111/j.1365-2664.2007.01325.x</u>
- ESCOS, J., & ALADOS, C. L. (2009). The home-range of the Spanish ibex in spring and fall. *Mammalia*, *56*(1), 57–64. doi: <u>10.1515/mamm.1992.56.1.57</u>
- Ferrier, S., Drielsma, M., Manion, G., & Watson, G. (2002). Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. II. Community-level modelling. *Biodiversity & Conservation*, 11(12), 2309–2338. doi: <u>10.1023/A:1021374009951</u>
- Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. *Environmental Conservation*, 24(1), 38–49. doi: <u>10.1017/S0376892997000088</u>
- Frankham, R., Ballou, J. D., & Briscoe, D. A. (2004). *A Primer of Conservation Genetics*. Cambridge University Press.
- Franklin, J., & Miller, J. A. (2010). *Mapping species distributions: Spatial inference and prediction*. doi: <u>10.1017/CBO9780511810602</u>

- Gilbert, F., Gonzalez, A., & Evans-Freke, I. (1998). Corridors maintain species richness in the fragmented landscapes of a microecosystem. *Proceedings of the Royal Society of London. Series B: Biological Sciences*, 265(1396), 577–582. doi: <u>10.1098/rspb.1998.0333</u>
- Graham, C. H., Ferrier, S., Huettman, F., Moritz, C., & Peterson, A. T. (2004). New developments in museum-based informatics and applications in biodiversity analysis. *Trends in Ecology & Evolution*, 19(9), 497–503. doi: <u>10.1016/j.tree.2004.07.006</u>
- Griffiths, H. M., Louzada, J., Bardgett, R. D., Beiroz, W., França, F., Tregidgo, D., & Barlow, J. (2015).
 Biodiversity and environmental context predict dung beetle-mediated seed dispersal in a tropical forest field experiment. *Ecology*, *96*(6), 1607–1619. doi: <u>10.1890/14-1211.1</u>
- Grignolio, S., Rossi, I., Bassano, B., Parrini, F., & Apollonio, M. (2004). Seasonal variations of spatial behaviour in female Alpine ibex (Capra ibex ibex) in relation to climatic conditions and age.
 Ethology Ecology & Evolution, 16(3), 255–264. doi: <u>10.1080/08927014.2004.9522636</u>
- Grignolio, Stefano, Rossi, I., Bassano, B., & Apollonio, M. (2007). Predation Risk as a Factor Affecting Sexual Segregation in Alpine Ibex. *Journal of Mammalogy*, *88*(6), 1488–1497. doi: <u>10.1644/06-</u> <u>MAMM-A-351R.1</u>
- Grøtan, V., Sæther, B.-E., Filli, F., & Engen, S. (2008). Effects of climate on population fluctuations of ibex. *Global Change Biology*, 14(2), 218–228. doi: <u>10.1111/j.1365-2486.2007.01484.x</u>
- Guisan, A., Graham, C. H., Elith, J., & Huettmann, F. (2007). Sensitivity of predictive species distribution models to change in grain size. *Diversity and Distributions*, *13*(3), 332–340. doi: <u>10.1111/j.1472-4642.2007.00342.x</u>
- Guisan, A., & Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. *Ecology Letters*, 8(9), 993–1009. doi: <u>10.1111/j.1461-0248.2005.00792.x</u>
- Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. *Ecological Modelling*, 135(2), 147–186. doi: <u>10.1016/S0304-3800(00)00354-9</u>
- Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. *Ecography*, 29(5), 773–785. doi: <u>10.1111/j.0906-7590.2006.04700.x</u>
- Hirzel, A. H., Hausser, J., Chessel, D., & Perrin, N. (2002). Ecological-Niche Factor Analysis: How to Compute Habitat-Suitability Maps Without Absence Data? *Ecology*, *83*(7), 2027–2036. doi: <u>10.1890/0012-9658(2002)083[2027:ENFAHT]2.0.CO;2</u>
- Hirzel, Alexandre H., & Lay, G. L. (2008). Habitat suitability modelling and niche theory. *Journal of Applied Ecology*, *45*(5), 1372–1381. doi: <u>10.1111/j.1365-2664.2008.01524.x</u>

- Huettmann, F., & Diamond, A. W. (2006). Large-scale effects on the spatial distribution of seabirds in the Northwest Atlantic. *Landscape Ecology*, 21(7), 1089–1108. doi: <u>10.1007/s10980-006-</u> <u>7246-8</u>
- Jongman, R. H. G., Bouwma, I. M., Griffioen, A., Jones-Walters, L., & Van Doorn, A. M. (2011). The Pan European Ecological Network: PEEN. *Landscape Ecology*, *26*(3), 311–326. doi: <u>10.1007/s10980-010-9567-x</u>
- Karger, Dirk N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., ... Kessler, M. (2018).
 Data from: Climatologies at high resolution for the earth's land surface areas (Version 1, p. 7266827510 bytes) [Data set]. doi: <u>10.5061/DRYAD.KD1D4</u>
- Karger, Dirk Nikolaus, Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., ... Kessler, M. (2017). Climatologies at high resolution for the earth's land surface areas. *Scientific Data*, 4(1), 170122. doi: <u>10.1038/sdata.2017.122</u>
- Knutti, R., Masson, D., & Gettelman, A. (2013). Climate model genealogy: Generation CMIP5 and how we got there. *Geophysical Research Letters*, 40(6), 1194–1199. doi: <u>10.1002/grl.50256</u>
- LaPoint, S., Gallery, P., Wikelski, M., & Kays, R. (2013). Animal behavior, cost-based corridor models, and real corridors. *Landscape Ecology*, *28*(8), 1615–1630. doi: <u>10.1007/s10980-013-9910-0</u>
- Lindenmayer, D. B., Margules, C. R., & Botkin, D. B. (2000). Indicators of Biodiversity for Ecologically Sustainable Forest Management. *Conservation Biology*, *14*(4), 941–950. doi: <u>10.1046/j.1523-</u> <u>1739.2000.98533.x</u>
- Luccarini, S., Mauri, L., Ciuti, S., Lamberti, P., & Apollonio, M. (2006). Red deer (Cervus elaphus) spatial use in the Italian Alps: home range patterns, seasonal migrations, and effects of snow and winter feeding. *Ethology Ecology & Evolution*, 18(2), 127–145. doi: 10.1080/08927014.2006.9522718
- Manel, S., Williams, H. C., & Ormerod, S. J. (2001). Evaluating presence–absence models in ecology: the need to account for prevalence. *Journal of Applied Ecology*, *38*(5), 921–931. doi: <u>10.1046/j.1365-2664.2001.00647.x</u>
- McPHERSON, J. M., Jetz, W., & Rogers, D. J. (2004). The effects of species' range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? *Journal of Applied Ecology*, *41*(5), 811–823. doi: <u>10.1111/j.0021-8901.2004.00943.x</u>
- Merow, C., Smith, M. J., & Silander, J. A. (2013). A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter. *Ecography*, *36*(10), 1058–1069. doi: <u>10.1111/j.1600-0587.2013.07872.x</u>

- Mysterud, A., Yoccoz, N. G., Stenseth, N. C., & Langvatn, R. (2000). Relationships between sex ratio, climate and density in red deer: the importance of spatial scale. *Journal of Animal Ecology*, *69*(6), 959–974. doi: <u>10.1111/j.1365-2656.2000.00454.x</u>
- Nikolakaki, P. (2004). A GIS site-selection process for habitat creation: estimating connectivity of habitat patches. *Landscape and Urban Planning*, *68*(1), 77–94. doi: <u>10.1016/S0169-</u> <u>2046(03)00167-1</u>
- Papeş, M., & Gaubert, P. (2007). Modelling ecological niches from low numbers of occurrences: assessment of the conservation status of poorly known viverrids (Mammalia, Carnivora) across two continents. *Diversity and Distributions*, *13*(6), 890–902. doi: <u>10.1111/j.1472-4642.2007.00392.x</u>
- Parrini, F., Grignolio, S., Luccarini, S., Bassano, B., & Apollonio, M. (2003). Spatial behaviour of adult male Alpine ibexCapra ibex ibex in the Gran Paradiso National Park, Italy. *Acta Theriologica*, 48(3), 411–423. doi: <u>10.1007/BF03194179</u>
- Pearce, J., & Ferrier, S. (2000). An evaluation of alternative algorithms for fitting species distribution models using logistic regression. *Ecological Modelling*, *128*(2), 127–147. doi: <u>10.1016/S0304-</u> <u>3800(99)00227-6</u>
- Pérez, J. M., Granados, J. E., Soriguer, R. C., Fandos, P., Márquez, F. J., & Crampe, J. P. (2002).
 Distribution, status and conservation problems of the Spanish Ibex, Capra pyrenaica (Mammalia: Artiodactyla)[†]. *Mammal Review*, 32(1), 26–39. doi: <u>10.1046/j.1365-2907.2002.00097.x</u>
- Peterson, A. T., Papeş, M., & Eaton, M. (2007). Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. *Ecography*, 30(4), 550–560. doi: <u>10.1111/j.0906-7590.2007.05102.x</u>
- Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. *Ecological Modelling*, 190(3), 231–259. doi: <u>10.1016/j.ecolmodel.2005.03.026</u>
- Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. *Ecography*, 31(2), 161–175. doi: <u>10.1111/j.0906-</u> <u>7590.2008.5203.x</u>
- Phillips, S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., & Ferrier, S. (2009).
 Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. *Ecological Applications*, *19*(1), 181–197. doi: <u>10.1890/07-2153.1</u>

- Raes, N., & Steege, H. ter. (2007). A null-model for significance testing of presence-only species distribution models. *Ecography*, *30*(5), 727–736. doi: <u>10.1111/j.2007.0906-7590.05041.x</u>
- Ray, N., Lehmann, A., & Joly, P. (2002). Modeling spatial distribution of amphibian populations: a
 GIS approach based on habitat matrix permeability. *Biodiversity & Conservation*, *11*(12), 2143–2165. doi: <u>10.1023/A:1021390527698</u>
- Schadt, S., Knauer, F., Kaczensky, P., Revilla, E., Wiegand, T., & Trepl, L. (2002). Rule-Based Assessment of Suitable Habitat and Patch Connectivity for the Eurasian Lynx. *Ecological Applications*, *12*(5), 1469–1483. doi: <u>10.1890/1051-0761(2002)012[1469:RBAOSH]2.0.CO;2</u>
- Schweiger, A. K., Schütz, M., Anderwald, P., Schaepman, M. E., Kneubühler, M., Haller, R., & Risch,
 A. C. (2015). Foraging ecology of three sympatric ungulate species Behavioural and resource
 maps indicate differences between chamois, ibex and red deer. *Movement Ecology*, 3(1), 6. doi: 10.1186/s40462-015-0033-x
- Scillitani, L., Sturaro, E., Menzano, A., Rossi, L., Viale, C., & Ramanzin, M. (2012). Post-release spatial and social behaviour of translocated male Alpine ibexes (Capra ibex ibex) in the eastern Italian Alps. *European Journal of Wildlife Research*, *58*(2), 461–472. doi: <u>10.1007/s10344-011-0596-9</u>
- Scillitani, L., Sturaro, E., Monaco, A., Rossi, L., & Ramanzin, M. (2012). Factors affecting home range size of male Alpine ibex (Capra ibex ibex) in the Marmolada massif. *Hystrix, the Italian Journal* of Mammalogy, 23(2), 19–27. doi: <u>10.4404/hystrix-23.2-4622</u>
- Seiler, A., & Helldin, J. O. (2006). Mortality in wildlife due to transportation. In J. Davenport & J. L. Davenport (Eds.), *The Ecology of Transportation: Managing Mobility for the Environment* (pp. 165–189). doi: <u>10.1007/1-4020-4504-2</u> 8
- Shabani, F., Kumar, L., & Ahmadi, M. (2018). Assessing Accuracy Methods of Species Distribution
 Models: AUC, Specificity, Sensitivity and the True Skill Statistic. *Global Journal of Human-Social Science Research*. Retrieved from
 <u>https://socialscienceresearch.org/index.php/GJHSS/article/view/2469</u>
- Stenseth, N. C., Mysterud, A., Ottersen, G., Hurrell, J. W., Chan, K.-S., & Lima, M. (2002). Ecological Effects of Climate Fluctuations. *Science*, *297*(5585), 1292–1296. doi: <u>10.1126/science.1071281</u>
- Taylor, P. D., Fahrig, L., Henein, K., & Merriam, G. (1993). Connectivity Is a Vital Element of Landscape Structure. *Oikos*, *68*(3), 571–573. doi: <u>10.2307/3544927</u>
- Thuiller, W., Lafourcade, B., Engler, R., & Araújo, M. B. (2009). BIOMOD A Platform for Ensemble Forecasting of Species Distributions. *Ecography*, *32*(3), 369–373. Retrieved from JSTOR.

- Tischendorf, L., & Fahrig, L. (2000). On the usage and measurement of landscape connectivity. *Oikos*, *90*(1), 7–19. doi: <u>10.1034/j.1600-0706.2000.900102.x</u>
- Tsoar, A., Allouche, O., Steinitz, O., Rotem, D., & Kadmon, R. (2007). A comparative evaluation of presence-only methods for modelling species distribution. *Diversity and Distributions*, 13(4), 397–405. doi: <u>10.1111/j.1472-4642.2007.00346.x</u>
- Viana, D. S., Granados, J. E., Fandos, P., Pérez, J. M., Cano-Manuel, F. J., Burón, D., ... Soriguer, R. C. (2018). Linking seasonal home range size with habitat selection and movement in a mountain ungulate. *Movement Ecology*, 6(1), 1. doi: <u>10.1186/s40462-017-0119-8</u>
- Villaret, Jean C., Bon, R., & Rivet, A. (1997). Sexual Segregation of Habitat by the Alpine Ibex in the French Alps. *Journal of Mammalogy*, *78*(4), 1273–1281. doi: <u>10.2307/1383070</u>
- Villaret, Jean Charles, & Bon, R. (1995). Social and Spatial Segregation in Alpine Ibex (Capra ibex) in Bargy, French Alps. *Ethology*, *101*(4), 291–300. doi: <u>10.1111/j.1439-0310.1995.tb00366.x</u>
- Wilson, M. F. J., O'Connell, B., Brown, C., Guinan, J. C., & Grehan, A. J. (2007). Multiscale Terrain Analysis of Multibeam Bathymetry Data for Habitat Mapping on the Continental Slope. *Marine Geodesy*, 30(1–2), 3–35. doi: <u>10.1080/01490410701295962</u>
- Wisz, M. S., & Guisan, A. (2009). Do pseudo-absence selection strategies influence species distribution models and their predictions? An information-theoretic approach based on simulated data. *BMC Ecology*, 9(1), 8. doi: <u>10.1186/1472-6785-9-8</u>

6. Materiale supplementare

Appendice I - Raster utilizzati nei modelli di distribuzione

Scala 100x100

a) Estensione del Modello Altimetrico del Terreno (m)

c) Esposizione Est (valori positivi) – Ovest (Valori negativi)

d) Esposizione Nord (valori positivi) – Sud (Valori negativi)

g) CLC1 – Superfici artificiali

104

h) CLC21 – Seminativi

i) CLC22 – Colture permanenti

j) CLC23 – Prati stabili

k) CLC24 – Zone agricole eterogenee

108
l) CLC31 – Zone forestali

n) CLC33 – Zone aperte con vegetazione rada o assente

o) CLC4_5 – Zone umide e corpi idrici

Scala 600x600

a) Range delle temperature annuale (BIO10_07) (Decimi di grado)

b) Precipitazioni invernali (mm)

c) Precipitazioni primaverili (mm)

e) Precipitazioni autunnali (mm)

f) Temperature invernali (decimi di grado)

g) Temperature primaverili (decimi di grado)

h) Temperature estive (decimi di grado)

i) Temperature autunnali (decimi di grado)

l) Pendenza (°)

Appendice II AUC e TSS dei modelli 100 x100

Maschi in inverno

ROC	RUN1	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	RUN9	RUN10	Full
Testing.data	0.95	0.95	0.951	0.949	0.949	0.95	0.95	0.949	0.951	0.95	0.951
Cutoff	155.5	117.5	95.5	107.5	105.5	130.5	95.5	131.5	109.5	99.5	111.5
Sensitivity	88.364	90.55	91.958	91.004	90.976	89.42	91.208	88.79	90.161	91.393	90.643
Specificity	88.824	86.194	85.046	85.565	85.269	87.444	85.389	87.778	86.741	85.546	86.102
TSS	RUN1	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	RUN9	RUN10	Full
Testing.data	0.771	0.766	0.769	0.763	0.762	0.768	0.764	0.766	0.768	0.769	0.767
Cutoff	152	131	101	121	101	131	101	131	111	101	111
Sensitivity	88.568	89.809	91.403	89.772	91.19	89.42	90.634	88.809	90.078	91.319	90.7
Specificity	88.574	86.907	85.5	86.509	84.963	87.444	85.796	87.685	86.796	85.593	86.015
Femmine in inverno											
ROC	RUN1	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	RUN9	RUN10	Full
Testing.data	0.952	0.954	0.953	0.954	0.951	0.954	0.952	0.955	0.953	0.953	0.954
Cutoff	223.5	169.5	134.5	131.5	160.5	135.5	167.5	145.5	162.5	173.5	146.5
Sensitivity	86.657	88.721	89.931	90.375	89.023	90.197	87.28	90.286	89.308	88.863	89.583
Specificity	90.267	88.933	87.433	87.3	87.983	86.7	89.717	87.733	88.483	89.15	88.073
TSS	RUN1	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	RUN9	RUN10	Full
Testing.data	0.769	0.775	0.772	0.777	0.768	0.768	0.769	0.779	0.778	0.78	0.775
Cutoff	222	172	131	131	152	131	172	141	162	162	141
Sensitivity	86.675	88.49	90.02	90.411	89.432	90.393	87.013	90.375	89.308	89.432	89.693
Specificity	90.183	89.05	87.233	87.217	87.45	86.433	89.817	87.483	88.45	88.517	87.753
Maschi in											
primavera ROC	RUN1	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	RUN9	RUN10	Full
Testina.data	0.94	0.937	0.939	0.939	0.94	0.935	0.935	0.937	0.938	0.938	0.939
Cutoff	138.5	130.5	166.5	135.5	151.5	160.5	150.5	135.5	135.5	145.5	140.5
Sensitivity	91.071	90.678	89.2	90.957	89.748	88.952	88.942	90.885	90.905	90.482	90.552
Specificity	83.385	82.823	85.031	82.948	84.615	84.229	84.208	82.823	83.146	84.229	83.154
TSS	RUN1	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	RUN9	RUN10	Full
Testing.data	0.744	0.735	0.742	0.738	0.743	0.732	0.731	0.735	0.74	0.746	0.737
Cutoff	139	130	170	129	149	160	148	130	139	140	140
Sensitivity	91.071	90.699	88.921	91.391	89.851	88.973	89.128	91.164	90.647	90.802	90.616
Specificity	83.385	82.76	85.24	82.354	84.417	84.156	83.958	82.396	83.323	83.729	83.065

Femmine primavera

ROC	RUN1	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	RUN9	RUN10	Full
Testing.data	0.94	0.936	0.94	0.939	0.943	0.938	0.94	0.941	0.94	0.94	0.943
Cutoff	169.5	218.5	175.5	187.5	185.5	107.5	160.5	146.5	179.5	200.5	171.5
Sensitivity	90.06	87.546	90.697	89.759	90.647	93.513	90.714	91.636	89.809	88.82	90.51
Specificity	84.067	86.2	83.7	84.283	84.567	80.1	83.15	83.067	84.4	85.75	84.587
TSS	RUN1	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	RUN9	RUN10	Full
Testing.data	0.741	0.736	0.743	0.739	0.75	0.735	0.737	0.745	0.741	0.745	0.751
Cutoff	141	222	172	182	182	111	182	172	162	202	172
Sensitivity	91.703	87.395	90.815	90.01	90.731	93.144	89.39	89.909	90.597	88.719	90.51
Specificity	82.283	86.317	83.5	83.867	84.25	80.333	84.283	84.567	83.433	85.783	84.587
Maschi in estate											
ROC	RUN1	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	RUN9	RUN10	Full
Testing.data	0.9	0.906	0.903	0.905	0.907	0.908	0.905	0.907	0.906	0.907	0.909
Cutoff	217.5	188.5	215.5	253.5	224.5	196.5	212.5	255.5	190.5	227.5	240.5
Sensitivity	92.473	94.298	93.791	91.249	92.989	94.847	93.36	91.46	95.32	92.668	92.201
Specificity	75.65	74.485	74.84	77.576	76.546	74.747	76.022	77.779	73.725	76.546	77.071
TSS	RUN1	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	RUN9	RUN10	Full
Testing.data	0.681	0.687	0.686	0.688	0.695	0.694	0.693	0.692	0.69	0.692	0.692
Cutoff	222	253	212	253	222	217	209	253	192	228	242
Sensitivity	92.237	90.97	93.926	91.274	93.115	93.588	93.512	91.578	95.185	92.668	92.14
Specificity	75.845	77.745	74.569	77.517	76.351	75.836	75.735	77.627	73.775	76.546	77.118
Femmine in estate											
ROC	RUN1	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	RUN9	RUN10	Full
Testing.data	0.931	0.93	0.931	0.934	0.933	0.93	0.932	0.931	0.931	0.931	0.935
Cutoff	147.5	149.5	159.5	202.5	180.5	138.5	143.5	176.5	191.5	166.5	187.5
Sensitivity	92.917	92.768	92.827	90.065	90.927	93.793	93.6	91.565	90.244	91.922	90.7
Specificity	79.632	79.868	80.029	83.324	82.103	78.176	79.426	81.221	81.971	81.074	82.429
TSS	RUN1	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	RUN9	RUN10	Full
Testing.data	0.724	0.726	0.727	0.734	0.729	0.718	0.73	0.727	0.722	0.728	0.731
Cutoff	182	172	162	202	222	192	172	172	192	162	172
Sensitivity	90.793	91.194	92.634	90.08	88.506	90.08	91.788	91.788	90.244	91.981	91.651
Specificity	81.544	81.279	80.088	83.221	84.485	81.618	81.206	80.956	81.971	80.838	81.424
Maschi in autunno	DUN1			DUNA	DUNE	DUNC		DUNO	DUNO	DUNI10	E. II
RUC	RUNI	RUNZ	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	RUN9	RUNIU	Full
resung.aata	101 5	104 5	0.919	101 5	104 5	190 5	0.917	0.92	0.914	U.91/	0.919
Carcitivity	191.2	194.5	201.5	191.2	194.5	199.2	210.5	210.5	170.5	187.5	177.5
Sensitivity	93.37	93.082	92.374	93.97	92.749	93.053	91.486	92.352	94.432	93.479	94.066
specificity	//.136	//.35	//.821	70.764	//.55/	//.45	/8.521	/8.493	74.821	70.529	70.25
TCC	DI INI1	DUNO	DUNO					DIINO		DI INI10	Eu II
Tosting data			0.701	0.706		0.704			0.601	0.600	
resung.aata	0.705	0.703	0.701	0.706	0.703	0.704	0.7	0.708	0.091	0.099	0.703

Cutoff		192	191	200	179	191	182	222	202	181	192	181
Sensitivity		93.37	93.277	92.475	94.114	92.952	93.421	91.124	92.771	93.717	93.226	93.835
Specificity		77.136	77.05	77.657	76.557	77.271	76.921	78.85	77.971	75.464	76.721	76.447
Femmine autunno	in											
ROC		RUN1	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	RUN9	RUN10	Full
Testing.data		0.927	0.927	0.925	0.925	0.925	0.927	0.929	0.925	0.929	0.926	0.929
Cutoff		194.5	172.5	144.5	178	173.5	201.5	165.5	166.5	170.5	180.5	173.5
Sensitivity		91.368	92.15	92.917	91.368	92.46	90.394	92.799	92.386	92.681	92.032	91.899
Specificity		80.662	79.603	77.721	79.426	79.853	81.221	79.412	79.162	79.235	80	79.732
TSS		RUN1	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	RUN9	RUN10	Full
Testing.data		0.72	0.718	0.705	0.707	0.723	0.715	0.722	0.715	0.719	0.719	0.716
Cutoff		182	172	172	182	172	202	162	162	172	172	172
Sensitivity		92.061	92.209	91.014	91.132	92.504	90.394	92.976	92.637	92.578	92.534	91.961
Specificity		79.912	79.529	79.544	79.588	79.765	81.221	79.206	78.794	79.294	79.353	79.626

Appendice III AUC e TSS dei modelli climatici al 600 x 600

Maschi in inverno

ROC	RUN1	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	RUN9	RUN10	Full
Testing.data	0.911	0.917	0.912	0.907	0.911	0.913	0.912	0.91	0.911	0.912	0.914
Cutoff	207.5	215.5	265.5	273.5	201.5	191.5	215.5	260.5	210.5	229.5	198.5
Sensitivity	88.067	88.04	83.167	82.759	88.012	89.225	87.4	81.555	87.178	85.631	90.233
Specificity	76.926	77.648	80.704	80.639	76.185	76.407	76.528	81.981	77.898	79.269	76.063
TSS	RUN1	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	RUN9	RUN10	Full
Testing.data	0.646	0.654	0.637	0.634	0.638	0.654	0.636	0.631	0.648	0.648	0.658
Cutoff	192	212	263	273	192	192	212	253	202	202	192
Sensitivity	89.457	88.123	83.176	82.768	88.846	89.225	87.437	81.694	87.539	88.206	90.591
Specificity	75.12	77.176	80.417	80.602	74.907	76.407	76.093	81.315	77.139	76.556	75.233
Femmine in											
inverno ROC	RUN1	RUN2	RUN3	RUN/	RUN5	RUNG	RUN7	RI IN 8	RUNG	RUN10	Full
Testina data	0.928	0.927	0 921	0.916	0.928	0.918	0 924	0.925	0.929	0 922	0 929
Cutoff	171 5	139 5	411	143 5	269.5	284 5	271 5	195 5	169 5	192.5	230.5
Sensitivity	93,168	91,977	75.983	93.471	87.173	80.235	79.683	85.857	88.561	85.59	83.894
Specificity	76.267	75.067	89.767	71.383	82.667	85.733	87.633	82.333	81.55	81.817	85.81
opeonytetty				, 1.000	02.007	001700	071000	02.000	02.00	01.017	00101
TSS	RUN1	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	RUN9	RUN10	Full
Testina.data	0.688	0.667	0.656	0.646	0.69	0.659	0.67	0.676	0.693	0.674	0.693
cutoff	162	242	394	141	263	283	232	192	162	192	141
Sensitivity	93.24	81.018	76.285	93.471	87.244	80.235	82.281	85.857	88.614	85.59	92.546
Specificity	75.5	85.667	88.9	71.117	81.75	85.45	84.683	81.667	80.683	81.783	76.65
Maschi in											
primavera											
RUC	RUN1	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	RUN9	RUN10	Full
Testing.data	0.905	0.909	0.91	0.913	0.915	0.91	0.911	0.91	0.91	0.913	0.914
Cutoff	1/5.5	211.5	202.5	251.5	243.5	275.5	236.5	205.5	204.5	172.5	194.5
Sensitivity	87.906	85./8/	85.100	82.789	82.272	80.442	81.528	84.898	85.104	90.17	86.217
Specificity	74.695	77.982	/8.305	82.005	82.551	83.078	81.100	78.21	78.22	/5.295	78.158
тсс	DUN1				DUNE			DIINO	RUNO		E.II
Tostina data	RUNI 0.622					KUND	KUN7	RUN8	RUN9	RUNIU	
Testing.aata	0.023	0.030	0.035	0.051	0.048	0.04	0.024	0.03	0.032	0.000	0.043
Culojj	97.026	212	202	222	242	275	217	202	202	00.17	192
Sensitivity	07.920	05.707	79 21	04.019 90.201	02.272	00.442	70 420	05.052 77.062	79 065	90.17 75 101	77 004
Specificity	/4.2/1	77.982	78.21	80.391	82.51	83.354	79.429	77.962	78.005	75.191	77.904
Fermina in											
primavera											
ROC	RUN1	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	RUN9	RUN10	Full
Testing.data	0.913	0.912	0.91	0.909	0.914	0.913	0.914	0.91	0.915	0.915	0.914

Cutoff	246.5	349.5	261.5	220.5	216.5	216.5	195.5	388.5	168.5	227.5	329.5
Sensitivity	86.792	75.595	77.724	89.373	88.502	85.702	88.334	75.31	86.658	86.188	82.609
Specificity	79.769	89.792	87.663	76.115	78.88	81.009	77.539	88.87	79.014	80.339	86.269
TSS	RUN1	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	RUN9	RUN10	Full
Testing.data	0.664	0.652	0.653	0.65	0.672	0.667	0.658	0.64	0.651	0.661	0.685
Cutoff	242	343	283	212	212	253	192	384	242	222	323
Sensitivity	86.792	75.595	76.534	89.373	88.736	83.423	88.367	75.327	81.177	86.222	82.609
Specificity	79.618	89.557	88.703	75.494	78.512	83.272	77.355	88.686	83.926	79.886	85.834
Maschi in estate											
ROC	RUN1	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	RUN9	RUN10	Full
Testing.data	0.935	0.933	0.933	0.934	0.934	0.937	0.937	0.935	0.933	0.935	0.936
Cutoff	163.5	172.5	151.5	188.5	161.5	158.5	150.5	153.5	188.5	155.5	171.5
Sensitivity	92	92.473	92.946	90.015	92.93	93.369	94.332	93.85	91.646	92.634	92.595
Specificity	79.976	80.122	78.846	81.705	80.104	79.12	79.026	78.941	80.917	79.865	80.105
TSS	RUN1	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	RUN9	RUN10	Full
Testing.data	0.718	0.726	0.716	0.714	0.726	0.722	0.733	0.727	0.722	0.723	0.725
Cutoff	162	172	172	162	152	172	152	152	172	152	172
Sensitivity	92.085	92.473	91.08	91.798	93.234	92.127	94.29	93.969	92.566	92.71	92.595
Specificity	79.771	80.044	80.404	79.608	79.3	80.104	79.06	78.769	79.617	79.514	80.105
Femmine in estate											
ROC	RUN1	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	RUN9	RUN10	Full
Testing data			0.042	0 030	0.94	0 9/13	0 946	0 941	0.941	0 941	0 94
resting.aata	0.94	0.938	0.942	0.959		0.545	0.540	0.011		0.011	0.5 1
Cutoff	0.94 308.5	0.938 308.5	326.5	283.5	258.5	250.5	289.5	269.5	313.5	311.5	259.5
Cutoff Sensitivity	0.94 308.5 92.159	0.938 308.5 91.045	0.942 326.5 91.164	283.5 91.238	258.5 93.065	250.5 91.417	289.5 92.397	269.5 93.332	313.5 91.907	311.5 91.936	259.5 93.284
Cutoff Sensitivity Specificity	0.94 308.5 92.159 82.824	0.938 308.5 91.045 83.706	0.942 326.5 91.164 84.603	283.5 91.238 83.103	258.5 93.065 82.221	250.5 91.417 84.279	289.5 92.397 83.25	269.5 93.332 82.632	313.5 91.907 83.456	311.5 91.936 84.176	259.5 93.284 81.824
Cutoff Sensitivity Specificity	0.94 308.5 92.159 82.824	0.938 308.5 91.045 83.706	0.942 326.5 91.164 84.603	283.5 91.238 83.103	258.5 93.065 82.221	250.5 91.417 84.279	289.5 92.397 83.25	269.5 93.332 82.632	313.5 91.907 83.456	311.5 91.936 84.176	259.5 93.284 81.824
Cutoff Sensitivity Specificity TSS	0.94 308.5 92.159 82.824 RUN1	0.938 308.5 91.045 83.706 RUN2	0.942 326.5 91.164 84.603 RUN3	283.5 91.238 83.103 RUN4	258.5 93.065 82.221 RUN5	250.5 91.417 84.279 RUN6	289.5 92.397 83.25 RUN7	269.5 93.332 82.632 RUN8	313.5 91.907 83.456 RUN9	311.5 91.936 84.176 RUN10	259.5 93.284 81.824 Full
Cutoff Sensitivity Specificity TSS Testing.data	0.94 308.5 92.159 82.824 RUN1 0.75	0.938 308.5 91.045 83.706 RUN2 0.746	0.942 326.5 91.164 84.603 RUN3 0.758	283.5 91.238 83.103 RUN4 0.743	258.5 93.065 82.221 RUN5 0.751	250.5 91.417 84.279 RUN6 0.755	289.5 92.397 83.25 RUN7 0.754	269.5 93.332 82.632 RUN8 0.759	313.5 91.907 83.456 RUN9 0.754	311.5 91.936 84.176 RUN10 0.761	259.5 93.284 81.824 Full 0.747
Cutoff Sensitivity Specificity TSS Testing.data Cutoff	0.94 308.5 92.159 82.824 RUN1 0.75 303	0.938 308.5 91.045 83.706 RUN2 0.746 303	0.942 326.5 91.164 84.603 RUN3 0.758 323	283.5 91.238 83.103 RUN4 0.743 283	258.5 93.065 82.221 RUN5 0.751 253	250.5 91.417 84.279 RUN6 0.755 242	289.5 92.397 83.25 RUN7 0.754 283	269.5 93.332 82.632 RUN8 0.759 273	313.5 91.907 83.456 RUN9 0.754 313	311.5 91.936 84.176 RUN10 0.761 313	259.5 93.284 81.824 Full 0.747 253
Cutoff Sensitivity Specificity TSS Testing.data Cutoff Sensitivity	0.94 308.5 92.159 82.824 RUN1 0.75 303 92.159	0.938 308.5 91.045 83.706 RUN2 0.746 303 91.253	0.942 326.5 91.164 84.603 RUN3 0.758 323 91.164	283.5 91.238 83.103 RUN4 0.743 283 91.238	258.5 93.065 82.221 RUN5 0.751 253 93.303	250.5 91.417 84.279 RUN6 0.755 242 91.654	289.5 92.397 83.25 RUN7 0.754 283 92.397	269.5 93.332 82.632 RUN8 0.759 273 92.917	313.5 91.907 83.456 RUN9 0.754 313 91.907	311.5 91.936 84.176 RUN10 0.761 313 91.936	259.5 93.284 81.824 Full 0.747 253 93.311
Cutoff Sensitivity Specificity TSS Testing.data Cutoff Sensitivity Specificity	0.94 308.5 92.159 82.824 RUN1 0.75 303 92.159 82.794	0.938 308.5 91.045 83.706 RUN2 0.746 303 91.253 83.162	0.942 326.5 91.164 84.603 RUN3 0.758 323 91.164 84.588	283.5 91.238 83.103 RUN4 0.743 283 91.238 83.103	258.5 93.065 82.221 RUN5 0.751 253 93.303 81.765	250.5 91.417 84.279 RUN6 0.755 242 91.654 83.868	289.5 92.397 83.25 RUN7 0.754 283 92.397 82.956	269.5 93.332 82.632 RUN8 0.759 273 92.917 82.985	313.5 91.907 83.456 RUN9 0.754 313 91.907 83.441	311.5 91.936 84.176 RUN10 0.761 313 91.936 84.176	259.5 93.284 81.824 Full 0.747 253 93.311 81.203
Cutoff Sensitivity Specificity TSS Testing.data Cutoff Sensitivity Specificity	0.94 308.5 92.159 82.824 RUN1 0.75 303 92.159 82.794	0.938 308.5 91.045 83.706 RUN2 0.746 303 91.253 83.162	0.942 326.5 91.164 84.603 RUN3 0.758 323 91.164 84.588	283.5 91.238 83.103 RUN4 0.743 283 91.238 83.103	258.5 93.065 82.221 RUN5 0.751 253 93.303 81.765	250.5 91.417 84.279 RUN6 0.755 242 91.654 83.868	289.5 92.397 83.25 RUN7 0.754 283 92.397 82.956	269.5 93.332 82.632 RUN8 0.759 273 92.917 82.985	313.5 91.907 83.456 RUN9 0.754 313 91.907 83.441	311.5 91.936 84.176 RUN10 0.761 313 91.936 84.176	259.5 93.284 81.824 Full 0.747 253 93.311 81.203
Cutoff Sensitivity Specificity TSS Testing.data Cutoff Sensitivity Specificity Maschi in autunno	0.94 308.5 92.159 82.824 RUN1 0.75 303 92.159 82.794	0.938 308.5 91.045 83.706 RUN2 0.746 303 91.253 83.162	0.942 326.5 91.164 84.603 RUN3 0.758 323 91.164 84.588	0.555 283.5 91.238 83.103 RUN4 0.743 283 91.238 83.103	258.5 93.065 82.221 RUN5 0.751 253 93.303 81.765	250.5 91.417 84.279 RUN6 0.755 242 91.654 83.868	289.5 92.397 83.25 RUN7 0.754 283 92.397 82.956	269.5 93.332 82.632 RUN8 0.759 273 92.917 82.985	313.5 91.907 83.456 RUN9 0.754 313 91.907 83.441	311.5 91.936 84.176 RUN10 0.761 313 91.936 84.176	259.5 93.284 81.824 Full 0.747 253 93.311 81.203
Cutoff Sensitivity Specificity TSS Testing.data Cutoff Sensitivity Specificity Maschi in autunno ROC	0.94 308.5 92.159 82.824 RUN1 0.75 303 92.159 82.794 RUN1	0.938 308.5 91.045 83.706 RUN2 0.746 303 91.253 83.162	0.942 326.5 91.164 84.603 RUN3 0.758 323 91.164 84.588	283.5 91.238 83.103 RUN4 0.743 283 91.238 83.103 83.103	258.5 93.065 82.221 RUN5 0.751 253 93.303 81.765	250.5 91.417 84.279 RUN6 0.755 242 91.654 83.868	289.5 92.397 83.25 RUN7 0.754 283 92.397 82.956 RUN7	269.5 93.332 82.632 RUN8 0.759 273 92.917 82.985	313.5 91.907 83.456 RUN9 0.754 313 91.907 83.441	311.5 91.936 84.176 RUN10 0.761 313 91.936 84.176 RUN10	259.5 93.284 81.824 Full 0.747 253 93.311 81.203 Full
Cutoff Sensitivity Specificity TSS Testing.data Cutoff Sensitivity Specificity Maschi in autunno ROC Testing.data	0.94 308.5 92.159 82.824 RUN1 0.75 303 92.159 82.794 RUN1 0.925	0.938 308.5 91.045 83.706 RUN2 0.746 303 91.253 83.162 RUN2 0.92	0.942 326.5 91.164 84.603 RUN3 0.758 323 91.164 84.588 RUN3 0.922	283.5 91.238 83.103 RUN4 0.743 283 91.238 83.103 RUN4 0.92	258.5 93.065 82.221 RUN5 0.751 253 93.303 81.765 RUN5 0.923	250.5 91.417 84.279 RUN6 0.755 242 91.654 83.868 RUN6 0.919	289.5 92.397 83.25 RUN7 0.754 283 92.397 82.956 RUN7 0.918	269.5 93.332 82.632 RUN8 0.759 273 92.917 82.985 RUN8 0.919	313.5 91.907 83.456 RUN9 0.754 313 91.907 83.441 RUN9 0.925	311.5 91.936 84.176 RUN10 0.761 313 91.936 84.176 RUN10 0.927	259.5 93.284 81.824 Full 0.747 253 93.311 81.203 Full 0.923
Cutoff Sensitivity Specificity TSS Testing.data Cutoff Sensitivity Specificity Maschi in autunno ROC Testing.data Cutoff	0.94 308.5 92.159 82.824 RUN1 0.75 303 92.159 82.794 RUN1 0.925 196.5	0.938 308.5 91.045 83.706 RUN2 0.746 303 91.253 83.162 RUN2 0.92 214.5	0.942 326.5 91.164 84.603 RUN3 0.758 323 91.164 84.588 RUN3 0.922 266.5	283.5 91.238 83.103 RUN4 0.743 283 91.238 83.103 91.238 83.103 RUN4 0.92 237.5	258.5 93.065 82.221 RUN5 0.751 253 93.303 81.765 81.765 0.923 184.5	250.5 91.417 84.279 RUN6 0.755 242 91.654 83.868 83.868 RUN6 0.919 173.5	289.5 92.397 83.25 RUN7 0.754 283 92.397 82.956 82.956	269.5 93.332 82.632 RUN8 0.759 273 92.917 82.985 RUN8 0.919 318.5	313.5 91.907 83.456 RUN9 0.754 313 91.907 83.441 RUN9 0.925 166.5	311.5 91.936 84.176 RUN10 0.761 313 91.936 84.176 84.176	259.5 93.284 81.824 Full 0.747 253 93.311 81.203 Full 0.923 241.5
Cutoff Sensitivity Specificity TSS Testing.data Cutoff Sensitivity Specificity Maschi in autunno ROC Testing.data Cutoff Sensitivity	0.94 308.5 92.159 82.824 RUN1 0.75 303 92.159 82.794 RUN1 0.925 196.5 90.33	0.938 308.5 91.045 83.706 RUN2 0.746 303 91.253 83.162 RUN2 0.92 214.5 88.72	0.942 326.5 91.164 84.603 RUN3 0.758 323 91.164 84.588 84.588 RUN3 0.922 266.5 85.231	283.5 91.238 83.103 RUN4 0.743 283 91.238 83.103 83.103 RUN4 0.92 237.5 86.799	258.5 93.065 82.221 RUN5 0.751 253 93.303 81.765 81.765 RUN5 0.923 184.5 90.561	250.5 91.417 84.279 RUN6 0.755 242 91.654 83.868 83.868 RUN6 0.919 173.5 91.969	289.5 92.397 83.25 RUN7 0.754 283 92.397 82.956 RUN7 0.918 219.5 88.164	269.5 93.332 82.632 RUN8 0.759 273 92.917 82.985 RUN8 0.919 318.5 81.823	313.5 91.907 83.456 RUN9 0.754 313 91.907 83.441 83.441 RUN9 0.925 166.5 93.529	311.5 91.936 84.176 RUN10 0.761 313 91.936 84.176 84.176 RUN10 0.927 269.5 83.31	 259.5 93.284 81.824 Full 0.747 253 93.311 81.203 Full 0.923 241.5 87.424
Cutoff Sensitivity Specificity TSS Testing.data Cutoff Sensitivity Specificity Maschi in autunno ROC Testing.data Cutoff Sensitivity Specificity	0.94 308.5 92.159 82.824 RUN1 0.75 303 92.159 82.794 RUN1 0.925 196.5 90.33 77.204	0.938 308.5 91.045 83.706 RUN2 0.746 303 91.253 83.162 RUN2 0.92 214.5 88.72 78.441	0.942 326.5 91.164 84.603 RUN3 0.758 323 91.164 84.588 84.588 RUN3 0.922 266.5 85.231 82.21	283.5 91.238 83.103 RUN4 0.743 283 91.238 83.103 91.238 83.103 RUN4 0.92 237.5 86.799 80.853	258.5 93.065 82.221 RUN5 0.751 253 93.303 81.765 81.765 0.923 184.5 90.561 76.698	250.5 91.417 84.279 RUN6 0.755 242 91.654 83.868 83.868 RUN6 0.919 173.5 91.969 75.101	289.5 92.397 83.25 RUN7 0.754 283 92.397 82.956 82.956 RUN7 0.918 219.5 88.164 78.552	269.5 93.332 82.632 RUN8 0.759 273 92.917 82.985 82.985 RUN8 0.919 318.5 81.823 84.949	313.5 91.907 83.456 RUN9 0.754 313 91.907 83.441 83.441 RUN9 0.925 166.5 93.529 73.839	311.5 91.936 84.176 RUN10 0.761 313 91.936 84.176 84.176	259.5 93.284 81.824 Full 0.747 253 93.311 81.203 Full 0.923 241.5 87.424 80.143
Cutoff Sensitivity Specificity TSS Testing.data Cutoff Sensitivity Specificity Maschi in autunno ROC Testing.data Cutoff Sensitivity Specificity	0.94 308.5 92.159 82.824 RUN1 0.75 303 92.159 82.794 RUN1 0.925 196.5 90.33 77.204	0.938 308.5 91.045 83.706 RUN2 0.746 303 91.253 83.162 83.162 RUN2 0.92 214.5 88.72 78.441	0.942 326.5 91.164 84.603 RUN3 0.758 323 91.164 84.588 84.588 RUN3 0.922 266.5 85.231 82.21	283.5 91.238 83.103 RUN4 0.743 283 91.238 83.103 83.103 RUN4 0.92 237.5 86.799 80.853	258.5 93.065 82.221 RUN5 0.751 253 93.303 81.765 81.765 0.923 184.5 90.561 76.698	250.5 91.417 84.279 RUN6 0.755 242 91.654 83.868 83.868 RUN6 0.919 173.5 91.969 75.101	289.5 92.397 83.25 RUN7 0.754 283 92.397 82.956 82.956 RUN7 0.918 219.5 88.164 78.552	269.5 93.332 82.632 RUN8 0.759 273 92.917 82.985 82.985 RUN8 0.919 318.5 81.823 84.949	313.5 91.907 83.456 RUN9 0.754 313 91.907 83.441 83.441 RUN9 0.925 166.5 93.529 73.839	311.5 91.936 84.176 RUN10 0.761 313 91.936 84.176 84.176 RUN10 0.927 269.5 83.31 84.743	 259.5 93.284 81.824 Full 0.747 253 93.311 81.203 Full 0.923 241.5 87.424 80.143
Cutoff Sensitivity Specificity TSS Testing.data Cutoff Sensitivity Specificity Maschi in autunno ROC Testing.data Cutoff Sensitivity Specificity	0.94 308.5 92.159 82.824 RUN1 0.75 303 92.159 82.794 82.794 RUN1 0.925 196.5 90.33 77.204 RUN1	0.938 308.5 91.045 83.706 RUN2 0.746 303 91.253 83.162 RUN2 0.92 214.5 88.72 78.441	0.942 326.5 91.164 84.603 RUN3 0.758 323 91.164 84.588 84.588 RUN3 0.922 266.5 85.231 82.21	283.5 91.238 83.103 RUN4 0.743 283 91.238 83.103 91.238 83.103 83.103 83.103 91.238 83.103 91.238 83.103 91.238 83.103 91.238 83.103 91.238 83.103	258.5 93.065 82.221 RUN5 0.751 253 93.303 81.765 81.765 0.923 184.5 90.561 76.698	250.5 91.417 84.279 RUN6 0.755 242 91.654 83.868 83.868 0.919 173.5 91.969 91.969 75.101	289.5 92.397 83.25 RUN7 0.754 283 92.397 82.956 82.956 RUN7 0.918 219.5 88.164 78.552	269.5 93.332 82.632 RUN8 0.759 273 92.917 82.985 82.985 RUN8 0.919 318.5 81.823 84.949	313.5 91.907 83.456 7 83.456 91.907 83.441 83.441 7 83.441 7 83.441 9.925 166.5 93.529 73.839	311.5 91.936 84.176 RUN10 0.761 313 91.936 84.176 84.176 C.927 269.5 83.31 84.743	259.5 93.284 81.824 Full 0.747 253 93.311 81.203 Full 0.923 241.5 87.424 80.143
Cutoff Sensitivity Specificity TSS Testing.data Cutoff Sensitivity Specificity Maschi in autunno ROC Testing.data Cutoff Sensitivity Specificity TSS Testing.data	0.94 308.5 92.159 82.824 RUN1 0.75 303 92.159 82.794 82.794 RUN1 0.925 196.5 90.33 77.204 RUN1 0.674	0.938 308.5 91.045 83.706 RUN2 0.746 303 91.253 83.162 83.162 214.5 88.72 78.441 RUN2 0.67	0.942 326.5 91.164 84.603 RUN3 0.758 323 91.164 84.588 91.164 84.588 84.588 0.922 266.5 85.231 82.21 82.21 RUN3 0.673	283.5 91.238 83.103 RUN4 0.743 283 91.238 83.103 91.238 83.103 83	258.5 93.065 82.221 RUN5 0.751 253 93.303 81.765 81.765 0.923 184.5 90.561 76.698 RUN5 0.672	250.5 91.417 84.279 RUN6 0.755 242 91.654 83.868 83.868 0.919 173.5 91.969 75.101 RUN6 RUN6	289.5 92.397 83.25 RUN7 0.754 283 92.397 82.956 82.956 RUN7 0.918 219.5 88.164 78.552	269.5 93.332 82.632 RUN8 0.759 273 92.917 82.985 82.985 RUN8 0.919 318.5 81.823 81.823 84.949	313.5 91.907 83.456 RUN9 0.754 313 91.907 83.441 83.441	311.5 91.936 84.176 RUN10 0.761 313 91.936 84.176 84.176 0.927 269.5 83.31 84.743 84.743	 259.5 93.284 81.824 Full 0.747 253 93.311 81.203 Full 0.923 241.5 87.424 80.143 Full 0.674
Cutoff Sensitivity Specificity TSS Testing.data Cutoff Sensitivity Specificity Maschi in autunno ROC Testing.data Cutoff Sensitivity Specificity TSS Testing.data Cutoff	0.94 308.5 92.159 82.824 RUN1 0.75 303 92.159 82.794 82.794 RUN1 0.925 196.5 90.33 77.204 RUN1 0.674 192	0.938 308.5 91.045 83.706 RUN2 0.746 303 91.253 83.162 RUN2 0.92 214.5 88.72 78.441 RUN2 0.67	0.942 326.5 91.164 84.603 RUN3 0.758 323 91.164 84.588	283.5 91.238 83.103 RUN4 0.743 283 91.238 83.103 91.238 83.103 83	258.5 93.065 82.221 RUN5 0.751 253 93.303 81.765 81.765 81.765 81.765 93.501 76.698 76.698 RUN5 0.672 RUN5 202	250.5 91.417 84.279 RUN6 0.755 242 91.654 83.868 83.868 RUN6 0.919 173.5 91.969 75.101 RUN6 75.101	289.5 92.397 83.25 RUN7 0.754 283 92.397 82.956 82.956 RUN7 0.918 219.5 88.164 78.552 88.164 78.552	269.5 93.332 82.632 RUN8 0.759 273 92.917 82.985 82.985 82.985 81.823 81.823 81.823 81.823 81.823 81.823 81.823	313.5 91.907 83.456 7 83.457 91.907 83.441 83.441 7 83.441 91.907 83.529 93.529 73.839 73.839 73.839	311.5 91.936 84.176 RUN10 0.761 313 91.936 84.176 84.176 RUN10 0.927 269.5 83.31 84.743 84.743	 259.5 93.284 81.824 Full 0.747 253 93.311 81.203 Full 0.923 241.5 87.424 80.143 Full 0.674 242
Cutoff Sensitivity Specificity TSS Testing.data Cutoff Sensitivity Specificity Maschi in autunno ROC Testing.data Cutoff Sensitivity Specificity TSS Testing.data Cutoff Sensitivity	0.94 308.5 92.159 82.824 RUN1 0.75 303 92.159 82.794 82.794 RUN1 0.925 196.5 90.33 77.204 RUN1 0.674 192 90.518	0.938 308.5 91.045 83.706 RUN2 0.746 303 91.253 83.162 83.162 214.5 88.72 78.441 RUN2 78.441 RUN2 0.67 212 88.828	0.942 326.5 91.164 84.603 RUN3 0.758 323 91.164 84.588 91.164 84.588 84.588 200 85.231 85.231 82.21 RUN3 0.673 263 85.268	283.5 91.238 83.103 RUN4 0.743 283 91.238 83.103 91.238 83.103 93.103 83	258.5 93.065 82.221 RUN5 0.751 253 93.303 81.765 81.765 0.923 184.5 90.561 76.698 90.561 76.698 RUN5 0.672 202	250.5 91.417 84.279 RUN6 0.755 242 91.654 83.868 3.868 0.919 173.5 91.969 75.101 RUN6 0.67 75.101	289.5 92.397 83.25 RUN7 0.754 283 92.397 82.956 82.956 82.956 88.164 78.552 88.164 78.552 RUN7 0.665 263 84.711	269.5 93.332 82.632 RUN8 0.759 273 92.917 82.985 82.985 81.823 81.823 84.949 RUN8 0.666 313 82.011	313.5 91.907 83.456 RUN9 0.754 313 91.907 83.441 83.441 7 83.441 91.907 83.529 166.5 93.529 73.839 73.839 8 RUN9 0.673 172	311.5 91.936 84.176 RUN10 0.761 313 91.936 84.176 84.176 0.927 269.5 83.31 84.743 84.743 RUN10 0.679 263 83.52	 259.5 93.284 81.824 Full 0.747 253 93.311 81.203 Full 0.923 241.5 87.424 80.143 Full 0.674 242 87.424

Specificity	76.801	78.115	81.927	81.111	78.089	74.955	81.772	84.528	74.242	84.288	80.143
Femmine in autunno											
ROC	RUN1	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	RUN9	RUN10	Full
Testing.data	0.908	0.895	0.898	0.907	0.901	0.905	0.891	0.908	0.903	0.891	0.902
Cutoff	259.5	289.5	244.5	287.5	256.5	271.5	299.5	303.5	331.5	249.5	333.5
Sensitivity	93.463	92.386	91.678	90.483	92.283	90.423	88.181	88.343	86.631	94.068	87.171
Specificity	72.544	73.221	71.794	76.088	73.015	74.088	74.426	77.765	78.647	67.868	77.221
TSS	RUN1	RUN2	RUN3	RUN4	RUN5	RUN6	RUN7	RUN8	RUN9	RUN10	Full
Testing.data	0.653	0.654	0.631	0.663	0.649	0.642	0.621	0.661	0.646	0.613	0.644
Cutoff	323	283	364	283	263	354	293	303	323	242	333
Sensitivity	86.557	92.416	80.021	90.704	90.94	82.81	88.195	88.343	87.133	94.496	87.174
Specificity	79.191	72.897	82.882	75.75	73.882	81.324	73.941	77.676	77.294	66.779	77.115

Appendice IV Modelli Distributivi dello stambecco a scala 100x100m

a) Maschi in inverno

b) Femmine in inverno

c) Maschi in primavera

d) Femmine in primavera

e) Maschi in estate

f) Femmine in estate

g) Femmine nel periodo del parto

h) Maschi in autunno

i) Femmine in autunno

Appendice V Modelli Distributivi dello stambecco a scala 600x600m

a) Maschi in inverno

b) Femmine in inverno

c) Maschi in primavera

d) Femmine in primavera

e) Maschi in estate

145

f) Femmine in estate

g) Maschi in autunno

h) Femmine in autunno

Appendice VI Proiezione dei Modelli Distributivi dello stambecco a scala 600 x 600m

a) Maschi in inverno

b) Femmine in inverno

c) Maschi in primavera

d) Femmine in primavera

e) Maschi in estate

f) Femmine in estate

g) Maschi in autunno

h) Femmine in autunno

